摘要:
The present disclosure relates to methods and systems that may reduce pixel noise due to defective sensor elements in optical imaging systems. Namely, a camera may capture a burst of images with an image sensor while adjusting a focus distance setting of an optical element. For example, the image burst may be captured during an autofocus process. The plurality of images may be averaged or otherwise merged to provide a single, aggregate image frame. Such an aggregate image frame may appear blurry. In such a scenario, “hot” pixels, “dead” pixels, or otherwise defective pixels may be more easily recognized and/or corrected. As an example, a defective pixel may be removed from a target image or otherwise corrected by replacing a value of the defective pixel with an average value of neighboring pixels.
摘要:
The specification and drawings present a new method, apparatus and software product for storing camera module characteristics of a camera module (or camera) of an electronic device provided during production (e.g., a factory testing) of the electronic device in a non-volatile memory of the camera module, such that the camera module characteristics are used by the electronic device for taking and processing images and/or identifying the camera module. The electronic device can be a wireless communication device, a portable electronic device, a camera, a camera-phone mobile device, etc.
摘要:
A technique for modifying data of an image, such as can be implemented in a still camera or video recorder in order to correct for defects in its optical and/or electronic systems, includes generating data to modify the image as a function of radial position across it. A variation of the intensity across an image (lens shading) that appears in data from a two-dimensional detector is an example of an application of the technique. In order to make modifications to the data, positions of a two-dimensional raster scan pattern of an image sensor are converted to radial positions and this is then used to generate the modification data. The modification data is generated on the fly, at the same rate as the image data is being acquired, so that the modification takes place without slowing down data transfer from the image sensor.
摘要:
To efficiently generate image data by using correction data. First offset data is obtained in advance for each of a plurality of imaging times, and is stored in a second image storage unit. The imaging time requested by a user is selected from the plurality of imaging times by a control unit, and an object is shot in the selected imaging time so as to store image data in a first image storage unit. A correction processing unit offset-corrects the image data by using first offset data corresponding to the selected imaging time and outputs first image data (preview image). In parallel with an output of the first image data, an imaging operation without irradiation is performed to have second offset data on approximately the same condition as actual imaging obtained by the control unit, and the image data is offset-corrected by using the obtained second offset data so as to output second image data.
摘要:
A multi-threshold optical binning method for classifying the image quality of an optical sensor (104) is presented. In accordance with the invention, a sensor tester (102) causes a sensor pixel image (105) to be generated by a sensor under test (104). The sensor pixel image (105) is comprised of a plurality of pixels, each represented by an associated quantized intensity level. The quantized intensity level of a pixel may fall into one of a first pixel class, a second pixel class, or a third pixel class, for example, a dark pixel class, a dim pixel class, and an acceptable pixel class. An image filter (106) processes the sensor pixel image (105), filtering out all pixels that fall within the acceptable pixel class, to generate a defective pixel map (108). The defective pixel map (108) includes those pixels which have a quantized intensity level that falls within the first and/or second pixel class but not the third pixel class.
摘要:
Techniques for modifying data of an image that can be implemented in a digital camera, video image capturing device and other optical systems are provided to correct for image shading variations appearing in data from a two-dimensional photo-sensor. These variations can be caused by imperfect lenses, non-uniform sensitivity across the photo-sensor, and internal reflections within a housing of the optical system, for example. In order to correct for these variations, a small amount of modification data is stored in a small memory within the camera or other optical system, preferably separate correction data for each primary color. The modification data is generated on the fly, at the same rate as the image data is being acquired, so that the modification takes place without slowing down data transfer from the image sensor.