Abstract:
A dimming device is provided which is compatible with an increased number of types of illumination loads. The dimming device includes a pair of input terminals, a bidirectional switch, an inputter, a power supply (5), a controller, and a current limiter (53). The power supply (5) is electrically connected between the pair of input terminals and is supplied with electric power from an AC power supply to generate control electric power. The controller is supplied with the control electric power from the power supply (5) to operate. The controller is configured to control the bidirectional switch in accordance with a dimming level. The current limiter (53) stops generation of the control electric power by the power supply (5) when a current larger than or equal to a specified value flows from the AC power supply through the power supply (5).
Abstract:
A light emitting drive device has an output voltage supply unit, and an emergency drive unit. The output voltage supply unit generates an output voltage from an input voltage on the basis of a control signal transmitted from a control unit, and supplies at least one light emitting element with the output voltage. In the cases where the emergency drive unit received a signal indicating abnormality of the control unit, the emergency drive unit lights the whole or a part of the at least one light emitting element irrespective of the control signal transmitted from the control unit.
Abstract:
A lighting device configured to deactivate dangerous pathogens (e.g., MRSA bacteria) in an environment. The lighting device includes at least one lighting element with a single light source configured to provide light. At least a first component of the light comprising light having a wavelength of about 405 nm, and at least a second component of the light comprising light having a wavelength of greater than 420 nm. The first component of light has a minimum integrated irradiance of 0.01 mW/cm2 measured from any unshielded point in the environment that is 1.5 m from any point on any external-most luminous surface of the lighting device.
Abstract:
The present disclosure is directed to a method, non-transitory computer readable medium and apparatus for remotely receiving information from and configuring a battery-backed emergency lighting system. In one embodiment, the method includes establishing a wireless communication session with a web server via a wireless fidelity (WiFi) connection, receiving a request for information related to the battery-backed emergency lighting system and a request to change a configuration of the battery-backed emergency lighting system over the wireless communication session, configuring the battery-backed emergency lighting system in accordance with the request to change the configuration and sending the information that is requested.
Abstract:
An operating device for an illuminant comprises input terminals (L, N) for being supplied with an AC voltage, output terminals (X1, X2) and a driving circuitry (1, 2) for driving the illuminant (3), when connected to the output terminals (X1, X2). In order to compensate an excessive high voltage between the output terminals (X1, X2) and the protective earth (PE) due to voltage surges at input terminals (L, N), bypass means (4) are provided to bypass a current from one of the output terminals (X1, X2) to protective earth (PE) and/or a neutral terminal (N) of the input terminals (L, N), wherein the bypass means (4) comprise at least one capacitor (C).
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A light emitting element driving semiconductor integrated circuit constitutes at least a part of a light emitting element driving device arranged to drive a series connection unit including a plurality of light emitting elements. The light emitting element driving semiconductor integrated circuit includes a single-element short-circuit detection unit arranged to detect that one of the plurality of light emitting elements is short-circuited, and a control unit arranged to control a power element of the light emitting element driving device so that current supplied from the light emitting element driving device to the series connection unit is increased, when the single-element short-circuit detection circuit detects that one of the plurality of light emitting elements is short-circuited.
Abstract:
A light emitting device includes a series connection unit constituted of N light emitting elements, a light emitting element driving circuit having an output terminal connected to an anode of the series connection unit, N short-circuit switches respectively connected in parallel to the light emitting elements, and a switch control unit arranged to control on and off of the short-circuit switches. A ground fault detection circuit, which detects a ground fault of the light emitting device, includes a reference voltage source arranged to generate a reference voltage, and a comparator arranged to compare the anode voltage of the series connection unit with the reference voltage. The reference voltage has a value smaller than the product of an on-resistance of one of the short-circuit switches and output current of the light emitting element driving circuit.
Abstract:
The invention further describes tube LED lamp (1) realised to replace a fluorescent tube lamp (70), which tube LED lamp (1) comprises a tube (12) containing an LED arrangement (10) with a number of LEDs (100); a connector arrangement (16A, 16B) with connectors (16) realized for insertion into sockets (50) of a socket arrangement (50A, 50B) of a tube lamp housing (5) incorporating a dimming ballast (20, 21); a driver circuit arrangement (11) for driving the LED arrangement (10), which driver circuit arrangement (11) is realized to output an LED current (ILED) on the basis of an input current provided by the dimming ballast (20, 21); and a safety switch (S13, M1) arranged within the tube (12) to electrically isolate connectors (16) of the connector arrangement (16A, 16B), wherein the safety switch (S13, M1) is arranged between the driver circuit arrangement (11) and the LED arrangement (10). The invention further describes a method of driving a tube LED lamp (1) from a dimming ballast (20, 21) of a fluorescent tube lamp (70).
Abstract:
The present invention relates to a lighting application, the lighting application can e.g. comprise an LED assembly comprising a serial connection of two or more LED units, each LED unit comprising one or more LEDs, each LED unit being provided with a controllable switch for substantially short-circuiting the LED unit. The lighting application further comprises a control unit for controlling a drive unit and arranged to receive a signal representing a voltage level of the supply voltage, and control the switches in accordance with the signal. The invention further provides for an LED driver that enables to operate a TRIAC based dimmer at an optimal holding current and an LED driver comprising a switchable buffer, e.g. a capacitor.