Semiconductor laser and method of fabricating semiconductor laser
    1.
    发明公开
    Semiconductor laser and method of fabricating semiconductor laser 失效
    Halbleiterlaser und Verfahren zur Herstellung des Halbleiterlasers

    公开(公告)号:EP0769831A1

    公开(公告)日:1997-04-23

    申请号:EP96106308.8

    申请日:1996-04-22

    IPC分类号: H01S3/19

    摘要: A method of fabricating a semiconductor laser comprises successively epitaxially growing on a first conductivity type semiconductor substrate (1), a first conductivity type lower cladding layer (2) comprising a semiconductor material having an effective band gap energy, an active layer (3) comprising a semiconductor material having an effective band gap energy smaller than that of the lower cladding layer (2), a second conductivity type first upper cladding layer (4) comprising the same material as the lower cladding layer (2) and having a relatively high etching rate by an etchant, a second conductivity type etch stopping layer (5) comprising a semiconductor material having a relatively low etching rate by the etchant, a second conductivity type second upper cladding layer (6) comprising the same material as the first upper cladding layer (4), and a second conductivity type first contact layer (7) comprising a semiconductor material; forming a stripe-shaped mask (8) on the first contact layer (7), the mask (8) extending in a reverse mesa direction that provides a stripe-shaped ridge structure having a reverse mesa cross section; using the mask (8), removing portions of the first contact layer (7) and the second upper cladding layer (6) by a first wet etching to expose the etch stopping layer (5); removing portions of the second upper cladding layer (6) by a second wet etching to form a stripe-shaped ridge structure having a reverse mesa cross section (19); growing a first conductivity type current blocking layer (12) contacting both sides of the ridge structure (19); and after removal of the mask (8), growing a second conductivity type second contact layer (13) comprising the same material as the first contact layer (7) on the current blocking layer (12) and on the first contact layer (7). In this method, a lower portion of the ridge structure having the ridge width increasing toward the active layer is etched selectively with respect to the etch stopping layer by the second wet etching, whereby the angle produced between the side wall of the ridge and the surface of the etch stopping layer is made an acute angle. As a result, a stripe-shaped ridge structure having a perfect reverse mesa cross section in which the ridge width is narrowest at the bottom of the ridge proximate to the active layer is obtained.

    摘要翻译: 一种制造半导体激光器的方法包括在第一导电类型半导体衬底(1),包括具有有效带隙能的半导体材料的第一导电类型下包层(2)上连续地外延生长,活性层(3)包括 具有比下包层(2)的有效带隙能量小的有效带隙能量的半导体材料,包含与下包层(2)相同的材料并且具有相对高的蚀刻的第二导电型第一上包层(4) 通过蚀刻剂的速率,第二导电型蚀刻停止层(5),其包括通过蚀刻剂具有相对低的蚀刻速率的半导体材料;第二导电类型的第二上包层(6),包括与第一上包层相同的材料 (4)和包含半导体材料的第二导电类型的第一接触层(7) 在所述第一接触层(7)上形成条状掩模(8),所述掩模(8)沿逆台面方向延伸,提供具有倒背台面横截面的条状脊状结构; 使用掩模(8),通过第一湿蚀刻去除第一接触层(7)和第二上包层(6)的部分以暴露蚀刻停止层(5); 通过第二湿蚀刻去除所述第二上包层(6)的部分以形成具有反台面横截面(19)的条状脊状结构; 生长接触所述脊结构(19)的两侧的第一导电型电流阻挡层(12); 并且在去除掩模(8)之后,在电流阻挡层(12)和第一接触层(7)上生长包括与第一接触层(7)相同的材料的第二导电类型的第二接触层(13) 。 在该方法中,通过第二湿蚀刻,相对于蚀刻停止层选择性地蚀刻具有朝向有源层增加的脊宽度的脊部结构的下部,由此在脊的侧壁和表面之间产生的角度 的蚀刻停止层制成锐角。 结果,获得了具有完美的反向台面横截面的条形脊结构,其中脊宽度在靠近有源层的脊的底部处最窄。

    Process for fabricating an avalanche photodiode and an avalanche photodiode thus-obtained
    2.
    发明公开
    Process for fabricating an avalanche photodiode and an avalanche photodiode thus-obtained 失效
    Herstellungsverfahren einer Lawinenphotodiode und so hergestellte Lawinenphotodiode。

    公开(公告)号:EP0163546A2

    公开(公告)日:1985-12-04

    申请号:EP85303862.8

    申请日:1985-05-31

    申请人: FUJITSU LIMITED

    IPC分类号: H01L31/107 H01L31/18

    摘要: In an avalanche photodiode a light absorption layer (3) and a multiplication layer (16) are first grown on a substrate. The multiplication layer is then mesa-etched and a second semiconductor layer (18) is grown on the mesa-etched multiplication layer. A dopant having a conductivity opposite to that of the above layers is introduced from the top of the second semiconductor layer to form a doped region (17) extending inside the mesa portion and a p-n junction is therefore formed inside the mesa-etched portion. This causes the distribution of multiplication in the active area to become uniform since the rough surface of the top of the mesa-etched portion exists outside the multiplication region.

    摘要翻译: 在雪崩光电二极管中,首先在基板上生长光吸收层(3)和倍增层(16)。 然后对乘法层进行台面蚀刻,并在台面蚀刻的乘法层上生长第二半导体层(18)。 从第二半导体层的顶部引入具有与上述层的导电性相反的导电性的掺杂剂,形成在台面部内部延伸的掺杂区域(17),由此在台面蚀刻部分的内部形成p-n结。 由于台面蚀刻部分的顶部的粗糙表面存在于乘法区域之外,所以在有源区域中的乘法分布变得均匀。

    METHOD FOR THERMALLY ANNEALING SILICON WAFER AND SILICON WAFER
    5.
    发明公开
    METHOD FOR THERMALLY ANNEALING SILICON WAFER AND SILICON WAFER 审中-公开
    VERFAHREN ZUR THERMISCHEN BEHANDLUNG VON EINEMSILIZIUMPLÄTTCHENUNDSILIZIUMPLÄTTCHEN

    公开(公告)号:EP1061565A1

    公开(公告)日:2000-12-20

    申请号:EP99959892.3

    申请日:1999-12-17

    IPC分类号: H01L21/26

    摘要: According to the present invention, there are provided a method for heat treatment of silicon wafers wherein a silicon wafer is subjected to a heat treatment at a temperature of from 1000°C to the melting point of silicon in an inert gas atmosphere, and temperature decreasing in the heat treatment is performed in an atmosphere containing 1-60% by volume of hydrogen, a method for heat treatment of silicon wafers under a reducing atmosphere containing hydrogen by using a rapid heating and rapid cooling apparatus, wherein temperature decreasing rate from the maximum temperature in the heat treatment to 700°C is controlled to be 20°C/sec or less, and a silicon wafer which has a crystal defect density of 1.0 x 10 4 defects/cm 3 or more in a wafer bulk portion, a crystal defect density of 1.0 x 10 4 defects/cm 3 or less in a wafer surface layer of a depth of 0.5 µm from the surface, a crystal defect density of 0.15 defects/cm 2 or less on a wafer surface and surface roughness of 1.0 nm or less in terms of the P-V value. By these, crystal defects in wafer surface layers can be reduced by a simple method with a small amount of hydrogen used without degrading microroughness of wafers.

    摘要翻译: 根据本发明,提供了一种硅晶片的热处理方法,其中硅晶片在惰性气体气氛中在1000℃至硅的熔点进行热处理,并且温度降低 在热处理中,在含有1-60体积%的氢的气氛中进行,通过使用快速加热和快速冷却装置,在含氢的还原气氛下热处理硅晶片的方法,其中从最大值 在700℃下的热处理温度控制在20℃/秒以下,晶片体积中的晶体缺陷密度为1.0×10 4缺陷/ cm 3以上的硅晶片 在距表面0.5μm的晶片表面层中的晶体缺陷密度为1.0×10 4缺陷/ cm 3以下,晶体缺陷密度为0.15缺陷/ cm 2或 较少在晶圆表面和表面粗糙 在P-V值方面为1.0nm以下。 通过这些,可以通过使用少量氢气的简单方法来降低晶片表面层中的晶体缺陷,而不会降低晶片的微观粗糙度。

    METHOD AND APPARATUS FOR PROCESSING THIN METAL LAYERS
    8.
    发明公开
    METHOD AND APPARATUS FOR PROCESSING THIN METAL LAYERS 审中-公开
    方法和设备处理薄金属层

    公开(公告)号:EP1259985A2

    公开(公告)日:2002-11-27

    申请号:EP01979560.8

    申请日:2001-10-09

    发明人: IM, James, S.

    IPC分类号: H01L21/768

    摘要: A method and apparatus for processing a thin metal layer on a substrate to control the grain size, grain shape, and grain boundary location and orientation in the metal layer by irradiating the metal layer with a first excimer laser pulse having an intensity pattern defined by a mask to have shadow regions and beamlets. Each region of the metal layer overlapped by a beamlet is melted throughout its entire thickness, and each region of the metal layer overlapped by a shadow region remains at least partially unmelted. Each at least partially unmelted region adjoins adjacent melted regions. After irradiation by the first excimer laser pulse, the melted regions of the metal layer are permitted to resolidify. During resolidification, the at least partially unmelted regions seed growth of grains in adjoining melted regions to produce larger grains. After completion of resolidification of the melted regions following irradiation by the first excimer laser pulse, the metal layer is irradiated by a second excimer laser pulse having a shifted intensity pattern so that the shadow regions overlap regions of the metal layer having fewer and larger grains. Each region of the metal layer overlapped by one of the shifted beamlets is melted throughout its entire thickness, while each region of the metal layer overlapped by one of the shifted shadow regions remains at least partially unmelted. During resolidification of the melted regions after irradiation by the second radiation beam pulse, the larger grains in the at least partially unmelted regions seed growth of even larger grains in adjoining melted regions. The irradiation, resolidification and re-irradiation of the metal layer may be repeated, as needed, until a desired grain structure is obtained in the metal layer.

    A GaP light emitting element substrate and a method of manufacturing it
    10.
    发明公开
    A GaP light emitting element substrate and a method of manufacturing it 失效
    Substrat aus GaPfürlichtemittierende Elemente und Verfahren zur Herstellung。

    公开(公告)号:EP0590649A1

    公开(公告)日:1994-04-06

    申请号:EP93115751.5

    申请日:1993-09-29

    IPC分类号: H01L33/00

    摘要: A GaP light emitting element substrate comprising an n-type GaP layer (12), a nitrogen-doped n-type GaP layer (13) and a p-type GaP layer (14) layered one after another on a multi-layer GaP substrate built by forming an n-type GaP buffer layer(s) (11) on an n-type GaP single crystal substrate (10), wherein the sulfur (S) concentration in said n-type GaP buffer layer (11) is made to be 5 x 10¹⁶ [atoms/cc] or less. The method of manufacturing it is as follows: an n-type GaP buffer layer(s) (11) is formed on an n-type GaP single crystal substrate (10) to prepare a multi-layer GaP substrate, then an n-type GaP layer (12), a nitrogen doped n-type GaP layer (13) and a p-type GaP layer (14) are layered on said multi-layer GaP substrate by means of the melt-back method to obtain a GaP light emitting element substrate, wherein the sulfur (S) concentration in said n-type GaP buffer layer (11) is made to be 5 x 10¹⁶ [atoms/cc] or less when the multi-layer GaP substrate is prepared.

    摘要翻译: 一种GaP发光元件基板,其包括在多层GaP基板上依次层叠的n型GaP层(12),掺杂氮的Ga型GaP层(13)和p型GaP层(14) 通过在n型GaP单晶衬底(10)上形成n型GaP缓冲层(11)而构成,其中将所述n型GaP缓冲层(11)中的硫(S)浓度制成 为5×10 -1 [6] [atoms / cc]以下。 其制造方法如下:在n型GaP单晶衬底(10)上形成n型GaP缓冲层(11)以制备多层GaP衬底,然后将n型GaP缓冲层 GaP层(12),氮掺杂n型GaP层(13)和p型GaP层(14)通过熔融回归法层叠在所述多层GaP衬底上,以获得GaP发光 元素衬底,其中当制备多层GaP衬底时,所述n型GaP缓冲层(11)中的硫(S)浓度为5×10 6 [原子/ cc]以下 。