摘要:
Disclosed are halide-free catalyst compositions for the disproportionation/isomerization of aromatic carboxylic acid salts. In one embodiment the catalyst comprises a mixed catalyst of compounds of copper, zinc, and zirconium; and, in a second embodiment, the catalyst comprises a copper compound treated with a base, optionally used with a promoter. Both halide-free catalysts provide advantages with respect to metallurgic problems, as well as good stability, activity and selectivity, and the later is faster kinetically at lower temperatures.
摘要:
A method is provided to produce dicarboxylic or tricarboxylic aromatic acid from salts of such acids, the method including the steps of providing an aqueous solution of a salt of a dicarboxylic or tricarboxylic aromatic acid, the aqueous solution having a pH of about 7 or greater; contacting the aqueous solution with sufficient carbon dioxide to lower the pH of the aqueous solution resulting in precipitation of at least a portion of the dicarboxylic or tricarboxylic aromatic acid; separating precipitated dicarboxylic or tricarboxylic aromatic acid from the solution; and recovering carbon dioxide from the solution.
摘要:
In a process for producing aromatic dicarboxylic acids which incorporates the disproportionation of a salt of an aromatic mono- or dicarboxylic acid to produce the unreacted salt of an aromatic mono- or dicarboxylic acid and the salt of the desired aromatic dicarboxylic acid, a method is disclosed for separating the salt of the desired product from the unreacted salt which comprises passing both said unreacted salt and said salt of the desired product in an aqueous solution over an adsorbent comprising an activated carbon. The process is particularly suitable for separating potassium naphthoate from 2,6-K2NDA after potassium naphthoate is disproportionated to produce 2,6-K2NDA and 1- or 2- potassium naphthoate. The adsorbent can be regenerated by the use of a displacing agent and reused without off site regeneration.
摘要:
In a process for producing aromatic dicarboxylic acids which incorporates the disproportionation of a salt of an aromatic mono- or dicarboxylic acid to produce the unreacted salt of an aromatic mono- or dicarboxylic acid and the salt of the desired aromatic dicarboxylic acid, a method is disclosed for separating the salt of the desired product from the unreacted salt which comprises passing both said unreacted salt and said salt of the desired product in an aqueous solution over an adsorbent comprising an activated carbon. The process is particularly suitable for separating potassium naphthoate from 2,6-K2NDA after potassium naphthoate is disproportionated to produce 2,6-K2NDA and 1- or 2- potassium naphthoate. The adsorbent can be regenerated by the use of a displacing agent and reused without off site regeneration.
摘要:
Disclosed are halide-free catalyst compositions for the disproportionation/isomerization of aromatic carboxylic acid salts. In one embodiment the catalyst comprises a mixed catalyst of compounds of copper, zinc, and zirconium; and, in a second embodiment, the catalyst comprises a copper compound treated with a base, optionally used with a promoter. Both halide-free catalysts provide advantages with respect to metallurgic problems, as well as good stability, activity and selectivity, and the later is faster kinetically at lower temperatures.
摘要:
2-(4-Substitutedphenyl)-2-benzoic acid derivatives, methods for their preparation, pharmaceutical formulations containing the compounds and the use thereof in the reduction or control of blood lipids in animals, including man, are disclosed. The preferred compound is 2-(4-trifluoromethylphenyl)-benzoic acid, which may be administered to man in a dose of about 4 mg/kg bodyweight per day.
摘要:
A method is provided to produce dicarboxylic or tricarboxylic aromatic acid from salts of such acids, the method including the steps of providing an aqueous solution of a salt of a dicarboxylic or tricarboxylic aromatic acid, the aqueous solution having a pH of about 7 or greater; contacting the aqueous solution with sufficient carbon dioxide to lower the pH of the aqueous solution resulting in precipitation of at least a portion of the dicarboxylic or tricarboxylic aromatic acid; separating precipitated dicarboxylic or tricarboxylic aromatic acid from the solution; and recovering carbon dioxide from the solution.