摘要:
A method of operating a heat cycle system, wherein the heat cycle system comprises a working fluid, which is cycled through a circuit comprising a compressor (10), a condenser (11), an expander unit (130), and an evaporator (140) and wherein the expander unit (130) is configured to generate a rotating mechanical motion, comprises operating the evaporator at an evaporator working fluid evaporation capacity that is at least about 110 % of the nominal evaporator working fluid evaporation capacity. There is also disclosed a heat cycle system as well as a method of modifying a heat cycle system.
摘要:
A steam generation apparatus includes: a heat medium flow passage through which a heat medium flows; a primary economizer disposed in the heat medium flow passage; a secondary economizer disposed in the heat medium flow passage at an upstream side of the primary economizer with respect to a flow direction of the heat medium; a primary evaporator disposed in the heat medium flow passage at an upstream side of the secondary economizer with respect to the flow direction of the heat medium; a first flash tank for generating flash steam; a first feed water line configured to supply water heated by the primary economizer to the secondary economizer; and a second feed water line disposed so as to branch from the first feed water line and configured to supply the water heated by the primary economizer to the first flash tank.
摘要:
A system (100) comprises a cryogenic engine (16) and a power generation apparatus, wherein the cryogenic engine and the power generation apparatus are coupled with each other to permit the cryogenic engine (16) and the power generation apparatus to work co-operatively with each other in a synergistic manner. The cryogenic engine (16) and the power generation apparatus are mechanically and optionally thermally coupled with each other so that the output means is shared between the cryogenic engine (16) and the power generation apparatus and that the two systems can be operated in the most power efficient manner and may also thermally interact to the potential advantage of both performance and economy.
摘要:
The present invention concerns a method and a system for converting thermal power delivered from a variable temperature heat source into mechanical power by means of a closed thermodynamic cycle. The cycle is characterized in that it operates between a higher temperature (Thigh) and a temperature substantially equal to ambient temperature (Tamb), wherein said higher temperature (Thigh) is much higher than ambient temperature (Tamb), said closed thermodynamic cycle comprising an adiabatic compression process for changing the temperature of a two-phase mixture from said ambient temperature (Tamb) to a lower temperature (Tlow) and to change the specific entropy value of one phase of said two-phase mixture from a first specific entropy value (si, s3) to a second specific entropy value (s2), said second specific entropy value (s2) being lower than said first specific entropy value (s1, s3) and said ambient temperature value (Tamb) being lower than the value of said lower temperature (Tlow).
摘要:
A cavitation engine configured to produce superheat steam from injected liquid water. The cavitation engine includes a funnel shaped impact chamber having an impact surface having a temperature of at least 375 degrees Fahrenheit, a small diameter opening at a bottom of the impact chamber, and an expansion chamber below the small diameter opening. The engine includes a fluid injector having an outlet positioned adjacent a largest diameter of the impact chamber and located to inject hyperbaric liquid water onto the impact surface of the impact chamber at supersonic velocities such that cavitation bubbles are present in the injected water. The outlet of the fluid injector and the impact surface are located relative to one another such that the outlet is spaced a distance from the impact surface of between 0.150 and 0.450 inches and the injected water hits the impact surface at an angle of between 85 and 95 degrees. Impact of the water with the impact surface crushes the cavitation bubbles in the injected water to generate pressure above 1,000 pounds per square inch and produce superheated steam.
摘要:
Apparatus for recovering energy from water is disclosed. Water is heated by application of electrical energy to heaters and contacting the water with the heaters in a manner and under pressure and temperature conditions such that it is instantaneously converted to gas. Energy in excess of that supplied to the heaters results from the rapid conversion of water to gas.
摘要:
The invention relates to a turbine device (2) comprising a turbine (1) comprising a turbine inlet (11) for receiving a refrigerant, a turbine outlet (12) for discharging the refrigerant and a flow path between the turbine inlet (11) and the turbine outlet (12), the turbine (1) further comprising a rotor (20) positioned in the flow path, the rotor (20) being arranged to rotate about an axis of rotation (RA) as a result of the refrigerant flowing through the flow path, wherein the rotor comprises a central rotor inlet (21) and at least two rotor outlets (22) at a radial outward position with respect to the rotor inlet (21), the rotor comprising at least two channels (23) spiraling outwardly with respect to the axis of rotation (RA), the at least two channels (23) connecting the rotor inlet (21) to the respective rotor outlets (22), the turbine (1) further comprising a collecting reservoir (40) positioned below the rotor (20) to receive the refrigerant from the rotor outlets (22), the turbine outlet (12) is formed by a fluid outlet (12') positioned in a lower part of the collecting reservoir (40) and a gas outlet (12'') positioned in the collecting reservoir (40) at a height in between the fluid outlet (12') and the rotor outlets (22), wherein the turbine device (2) further comprises at least one of a generator (100) connected and driven by the rotor (20), and a compressor (70), the compressor and/or generator (70) at least partially be driven the rotor (20).