摘要:
An optical power beam transmission systems, with a directional light transmitter and receiver. The transmitter contains an amplifying laser medium, and this together with a retroreflector in the receiver, forms a laser resonator. When lasing sets in, the receiver can extract optical power through an output coupler and convert it to electrical power. The gain medium may be a disc having a thickness substantially smaller than its lateral dimensions. The laser resonator is operated as a stable resonator to ensure safe operation. This is achieved by use of an adaptive optical element, for reducing the diameter of the energy beam impinging on the gain medium, thereby increasing the overlap between the energy beam and the gain medium. As the transmitter-receiver distance is changed, such as by movement of the receiver, the adaptive optical element focal length changes to ensure that the cavity remains within its stability zone.
摘要:
There is described a gas laser comprising a pair of substantially mutually parallel and opposed electrodes (17, 37), between which a volume is defined containing a gas in which said electrodes generate a discharge. At opposed ends of the electrodes, in said volume, mirrors (65) are arranged to define a resonant cavity. The electrodes form an integral part of two portions (5, 7) of a sealed housing (1), containing the gas and in which the mirrors and the electrodes are housed. The two portions (5, 7) forming the housing are electrically connected.
摘要:
In a slot array structure, electromagnetic wave emission which is uniform as a whole over the length of a laser tube is realized to allow uniform laser emission with minimum energy loss. Slots (10) are formed at a predetermined pitch in a long end face (H plane) of each waveguide (1) along a central line (m) in the longitudinal direction of the H plane to be alternately located on the left and right sides of the central line (m) and spaced apart from the central line (m) by a distance (d).
摘要:
An optical power beam transmission systems, with a directional light transmitter and receiver. The transmitter contains an amplifying laser medium, and this together with a retroreflector in the receiver, forms a laser resonator. When lasing sets in, the receiver can extract optical power through an output coupler and convert it to electrical power. The gain medium may be a disc having a thickness substantially smaller than its lateral dimensions. The laser resonator is operated as a stable resonator to ensure safe operation. This is achieved by use of an adaptive optical element, for reducing the diameter of the energy beam impinging on the gain medium, thereby increasing the overlap between the energy beam and the gain medium. As the transmitter-receiver distance is changed, such as by movement of the receiver, the adaptive optical element focal length changes to ensure that the cavity remains within its stability zone.
摘要:
A plasma is excited uniformly as a whole over the length of each slot. A laser oscillating apparatus is designed to excite a laser gas in a laser tube (2) by introducing electromagnetic waves into the laser tube through a plurality of slots (10) formed in a waveguide wall and generate a laser beam by resonating the light generated from the laser gas. A least one electrode (13) is placed near the slot (10). By giving a predetermined current density to the electrode (13), the intensity distribution of light generated from the laser gas above the slot (10) is controlled.