潤滑剤保持基材及びその製造方法、滑性材料及びその製造方法
    3.
    发明专利
    潤滑剤保持基材及びその製造方法、滑性材料及びその製造方法 审中-公开
    润滑油基材及其制造方法,滑动材料及其制造方法

    公开(公告)号:JP2016159528A

    公开(公告)日:2016-09-05

    申请号:JP2015040586

    申请日:2015-03-02

    摘要: 【課題】フッ素系以外の化合物を材料にして、表面が水や油などの液体に対する滑り性をもつ滑性材料と、フッ素系の潤滑剤を保持して滑性材料に用いることができる潤滑剤保持基材、及びこれらの製造方法を提供する。 【解決手段】滑性フィルム10は、保持ベース11と潤滑剤12とを備える。保持ベース11は、ピラー構造部13と、フッ素含有部14とを有し、フッ素含有部14はピラー構造部13の複数のピラー部13aの外表面13bに設けられている。潤滑剤12はフッ素系の液体であり、フッ素含有部14はC−F結合を有する。潤滑剤12は、複数のピラー部13aに囲まれた領域を満たしており、この領域に保持されている。 【選択図】図1

    摘要翻译: 要解决的问题:为了提供一种由非氟基化合物制成的滑动材料,并且具有足够的表面对于诸如水和油的液体的光滑性,保持氟基润滑剂的润滑剂保持基材可以是 作为滑动材料使用,以及制造它们的方法。滑动膜10具有保持基座11和润滑剂12.保持基座11具有支柱结构部分13和含氟部分14,并且含氟部分 14设置在柱状结构部13的多个支柱部13a的外表面13b上。润滑剂12是氟系液体,含氟部分14具有CF键。 润滑剂12填充由多个支柱部分13a包围的区域并保持在该区域中。图示:图1

    Heat insulating wall, heat insulating box body and method of manufacturing the same
    4.
    发明专利
    Heat insulating wall, heat insulating box body and method of manufacturing the same 有权
    热绝缘壁,热绝缘箱体及其制造方法

    公开(公告)号:JP2014149091A

    公开(公告)日:2014-08-21

    申请号:JP2012280672

    申请日:2012-12-25

    IPC分类号: F25D23/06 F16L59/04 F25D23/08

    摘要: PROBLEM TO BE SOLVED: To improve heat insulating performance when achieving communication in urethane foam by uniformizing the urethane foam and preventing appearance deformation.SOLUTION: A heat insulating wall according to the present invention comprises: a hollow wall body in which a hollow portion is a heat insulating space; a gas flow ports (6) for causing the heat insulating space (10) arranged in the wall body to communicate with the outside; open-cell urethane foam (4) foamed so as to fill the heat insulating space of the wall body; and a sealing material (60) for sealing the gas flow ports. A heat insulating box body according to the present invention comprises: an outer box (2); an inner box (3) housed in the outer box; the gas flow ports (6) for causing the heat insulating space (10) arranged between the outer box and the inner box to communicate with the outside; the open-cell urethane foam (4) foamed so as to fill the heat insulating space; and the sealing material (60) for sealing the gas flow ports.

    摘要翻译: 要解决的问题:通过使聚氨酯泡沫均匀化并防止外观变形来实现聚氨酯泡沫中的连通,提高绝热性能。本发明的绝热壁包括:中空壁体,其中空部分为 隔热空间; 用于使布置在所述壁体中的绝热空间(10)与外部连通的气体流通口(6) 发泡的开孔聚氨酯泡沫(4)以填充壁体的绝热空间; 以及用于密封气体流动口的密封材料(60)。 根据本发明的隔热箱体包括:外箱(2); 容纳在外箱中的内箱(3) 用于使布置在外箱和内箱之间的绝热空间(10)与外部连通的气流端口(6) 开孔聚氨酯泡沫(4)发泡以填充绝热空间; 和用于密封气体流动口的密封材料(60)。

    Method for manufacturing polyethylene-based resin foamed blow molded article and polyethylene-based resin foamed blow molded article
    9.
    发明专利
    Method for manufacturing polyethylene-based resin foamed blow molded article and polyethylene-based resin foamed blow molded article 有权
    基于聚乙烯的树脂泡沫吹塑制品和基于聚乙烯的树脂泡沫塑料吹塑制品的方法

    公开(公告)号:JP2010260229A

    公开(公告)日:2010-11-18

    申请号:JP2009111947

    申请日:2009-05-01

    摘要: PROBLEM TO BE SOLVED: To provide a polyethylene-based resin foamed blow molded article having a high expansion ratio, heat resistance, low temperature brittleness and uniform thickness. SOLUTION: The polyethylene-based resin foamed blow molded article is obtained by melt-mixing 20 to 100 wt.% of a polyethylene-based resin (I) satisfying the following conditions and a physical blowing agent and extruding the resultant mixture to blow-mold a foamed parison. The polyethylene-based resin (I) has (A) density of ≥0.935 g/cm 3 , (B) a melt tension of ≥1 cN at 190°C, (C) a melt flow rate of ≥1 g/10 min as measured at 190°C under a load of 2.16 kg and (D) an isothermal crystallization time of ≥45 s at which one-quarter of a total fusion calorific value in a DSC (Differential Scanning Calorimetry) curve (X) becomes equal to an isothermal crystallization calorific value in a DSC curve (Y), wherein the DSC curve (X) is obtained by heating the polyethylene-based resin from 23°C to 160°C at a heating rate of 10°C/min, then cooling it to 23°C at a cooling rate of 10°C/min, and heating it to 200°C at a heating rate of 10°C/min again. the DSC curve (Y) is obtained by heating the polyethylene-based resin from 23°C to 160°C at a heating rate of 10°C/min, maintaining it at 160°C for 3 min, then cooling it to temperature equal to crystallization temperature of the resin +3°C at a cooling rate of 50°C/min, both curves (X) and (Y) being obtained by using a DSC method. COPYRIGHT: (C)2011,JPO&INPIT

    摘要翻译: 要解决的问题:提供具有高膨胀率,耐热性,低温脆性和均匀厚度的聚乙烯基树脂发泡吹塑制品。 解决方案:聚乙烯基树脂发泡吹塑制品通过将满足以下条件的20-100重量%的聚乙烯类树脂(I)和物理发泡剂熔融混合而获得,并将所得混合物挤出 吹塑一个发泡型坯。 聚乙烯类树脂(I)的密度为(≥0.935g/ cm 3),(B)190℃下的熔融张力≥1cN,(C)熔体流动速率 在190℃,2.16kg的负荷下测定为≥1g/ 10分钟,(D)等温结晶时间≥45秒,其中在DSC(差示扫描量热法)中的总熔融热值的四分之一, 曲线(X)与DSC曲线(Y)中的等温结晶发热量相等,其中DSC曲线(X)是通过将聚乙烯类树脂从23℃加热至160℃,加热速率为10 ℃,然后以10℃/ min的冷却速度将其冷却至23℃,再次以10℃/分钟的升温速度将其加热到200℃。 通过将聚乙烯类树脂从23℃加热至160℃,以10℃/分钟的升温速度加热,将其保持在160℃3分钟,然后冷却至等温,得到DSC曲线(Y) 以50℃/分钟的冷却速度将树脂+ 3℃的结晶温度,通过使用DSC法获得两条曲线(X)和(Y)。 版权所有(C)2011,JPO&INPIT