Abstract:
The present invention provides a multilayered metal-ceramic composite nuclear fuel coating pipe including: an external metal unit of a nuclear fuel coating pipe; an internal metal unit of the nuclear fuel coating pipe having a diameter, which is smaller than the diameter of the external metal unit of the nuclear fuel coating pipe, and is arranged on the same axis as the external metal unit of the nuclear fuel coating pipe; and a silicon carbide composite which is charged between the external metal unit and the internal metal unit of the nuclear fuel coating pipe. The silicon carbide composite has a reduced neutron absorbing section and increased mechanical strength and melting point at a high temperature. Therefore, if the nuclear fuel coating pipe including the silicon carbide composite is manufactured, the neutron usage efficiency is improved and stability is improved when a nuclear power plant is in an abnormal operation and in emergency. The present invention also provides a manufacturing method of the multilayered metal-ceramic composite nuclear fuel coating pipe.
Abstract:
A method for producing a silicon carbide composite material reinforced with high-density silicon carbide fibers is provided to realize a low porosity of less than 2% and high strength of 400 MPa or greater while reducing the amount of a sintering aid. A method for producing a silicon carbide composite material reinforced with high-density silicon carbide fibers comprises the steps of: stacking silicon carbide tapes containing 2-7 wt% of a sintering aid and silicon carbide webs woven with silicon carbide fibers, alternately with each other, to form a preform; and sintering the preform. The sintering aid is a mixture containing at least two compounds selected from the group consisting of SiO2, BaO, MgO, Al2O3, Y2O3, Er2O3, Yb2O3, Lu2O3, Sc2O3, CaO and AlN. Further, a thickness of the silicon carbide tapes is 30 to 200 mum.
Abstract translation:提供一种用高密度碳化硅纤维增强的碳化硅复合材料的制造方法,在减少烧结助剂的量的同时,实现小于2%的低孔隙率和400MPa以上的高强度。 用高密度碳化硅纤维增强的碳化硅复合材料的制造方法包括以下步骤:将含有2-7重量%的烧结助剂的碳化硅带与碳化硅纤维相互交替的碳化硅网堆叠起来 ,以形成预制件; 并烧结预制件。 烧结助剂是含有选自SiO 2,BaO,MgO,Al 2 O 3,Y 2 O 3,Er 2 O 3,Yb 2 O 3,Lu 2 O 3,Sc 2 O 3,CaO和AlN中的至少两种化合物的混合物。 另外,碳化硅带的厚度为30〜200μm。
Abstract:
본 발명은 일차원 탄화규소 증착물의 선택적 성장 방법에 관한 것으로, 보다 상세하게는 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소 면에 촉매를 사용하지 않고 기상-고상 반응을 통하여 일차원 구조를 지닌 탄화규소 증착물을 선택적으로 성장시키는 방법에 대한 것으로서, 종래 촉매를 이용함으로써 불순물이 유입되는 문제점을 해결할 뿐만 아니라 공정 단계를 효율적으로 단축할 수 있어 성능이 우수한 전계방출소자나 기타 전자소자에 유용하게 적용할 수 있는 유용한 효과를 제공할 수 있다. 전계방출소자, 탄화규소, 휘스커, 나노와이어, 나노로드, 나노화이버, 화학기상증착법
Abstract:
본 발명은 일차원 탄화규소 증착물의 선택적 성장 방법에 관한 것으로, 보다 상세하게는 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소 면에 촉매를 사용하지 않고 기상-고상 반응을 통하여 일차원 구조를 지닌 탄화규소 증착물을 선택적으로 성장시키는 방법에 대한 것으로서, 종래 촉매를 이용함으로써 불순물이 유입되는 문제점을 해결할 뿐만 아니라 공정 단계를 효율적으로 단축할 수 있어 성능이 우수한 전계방출소자나 기타 전자소자에 유용하게 적용할 수 있는 유용한 효과를 제공할 수 있다. 전계방출소자, 탄화규소, 휘스커, 나노와이어, 나노로드, 나노화이버, 화학기상증착법
Abstract:
본 발명의 일 실시예에 따르는 핵연료봉은, 제1 세라믹 바디와 제2 세라믹 바디 및 상기 바디들을 접합시키도록 상기 바디들 사이에 형성되는 중간부재를 포함하고, 상기 중간부재는, 레이저 빔의 조사에 의해 용융된 메탈 레이어가 상기 세라믹 바디들과 반응하여 형성되며, 상기 세라믹 바디를 구성하는 일부가 내부로 확산되어 이루어지는 제1 확산층을 포함한다.
Abstract:
According to an embodiment of the present invention, a nuclear fuel rod includes a first ceramic body, a second ceramic body, and an intermediate member formed between the first and second ceramic bodies to join the first and second ceramic bodies. The intermediate member is formed by reaction of a metal layer, molten by irradiation of a laser beam, with the first and second ceramic bodies and includes a first diffusion layer formed by a part of the ceramic body diffused therein.
Abstract:
A nondestructive coating thickness measurement method for a TRISO-coated fuel particle by using a phase difference X-ray radiography image and an apparatus thereof are provided to enhance an inspection process of a TRISO-coated fuel particle by measuring the coating thickness nondestructively. A nondestructive coating thickness measurement apparatus for a TRISO-coated fuel particle by using a phase difference X-ray radiography image includes an X-ray shielding cabinet(1). The X-ray shielding cabinet is made of lead for preventing X-ray from leaking. A vibration-preventive system(2) is installed below the X-ray shielding cabinet in order to block external vibration for maintaining precision under micro meters. An X-ray detector(3), made with semiconductor elements, is installed inside the X-ray shielding cabinet and converts X-ray signals to real-time image signals for increasing detecting efficiency. A sample transporter(5) fixes the coated fuel particle on an intended spot with precision. An X-ray generator(6) has a minimum focus size of 0.2~5mum for obtaining a phase difference image. The X-ray generator controller(7) controls the tube voltage, tube current, and focus size of the X-ray generator. A computer system(8) controls the X-ray generator and the X-ray detector and executes a program for coating thickness measurement. A frame grabber converts image signals to digital signals and inputs the digital signals to the computer system. An image monitor displays an X-ray image and a measurement result.