고강도­고강성도 베타 티타늄 합금의 제조 방법
    3.
    发明公开
    고강도­고강성도 베타 티타늄 합금의 제조 방법 无效
    制备高强度高韧性钛白粉合金的方法

    公开(公告)号:KR1020130009639A

    公开(公告)日:2013-01-23

    申请号:KR1020120075100

    申请日:2012-07-10

    Abstract: PURPOSE: Method of making high strength-high stiffness beta titanium alloy is provided to produce TiB(titanium boride) precipitates by a suitable method such as a pre-alloyed powder metallurgy technique, thereby improving mechanical properties of beta titanium alloys, Ti-5553. CONSTITUTION: A method of making high strength-high stiffness beta titanium alloy comprises introducing boron into a beta titanium alloy to produce TiB precipitates; heat treating the titanium alloy with TiB precipitates by homogenization above the beta transus temperature of the alloy; subjecting the heat treated alloy to a hot metalworking operation below the beta transus temperature; heat treating the worked alloy with a solution treatment below the beta transus temperature; and ageing the solution treated alloy below the beta transus temperature. The TiB precipitates are accomplished by a casting, cast-and-wrought processing, powder metallurgy techniques such as gas atomization and blended elemental approach. The titanium alloy powder is consolidated by hot isostatic pressing. [Reference numerals] (AA) Spare alloy powder; (BB) Powder compaction; (CC) Homogenization; (DD) Hot processing; (EE) Hot treatment

    Abstract translation: 目的:提供高强度高刚度β钛合金的方法,通过合金化的粉末冶金技术等合适的方法制备TiB(硼化钛)沉淀物,从而改善β钛合金Ti-5553的机械性能。 构成:制造高强度高刚度β钛合金的方法包括将硼引入β钛合金中以产生TiB沉淀物; 通过高于合金的β转变温度的均匀化将钛合金与TiB沉淀物进行热处理; 对经热处理的合金进行低于β转子温度的热金属加工操作; 用低于β转子温度的溶液处理对加工的合金进行热处理; 并将溶液处理的合金老化到β转子温度以下。 TiB沉淀物通过铸造,铸造和锻造加工,粉末冶金技术如气体雾化和混合元素方法实现。 钛合金粉末通过热等静压进行固结。 (附图标记)(AA)备用合金粉末; (BB)粉末压实; (CC)均质化; (DD)热加工; (EE)热处理

    리튬 배터리용 음극 활성 물질 및 그를 사용하는 리튬 배터리용 음극
    8.
    发明公开
    리튬 배터리용 음극 활성 물질 및 그를 사용하는 리튬 배터리용 음극 审中-实审
    用于锂离子电池的绝缘电极活性材料和使用其的锂离子电池的负极

    公开(公告)号:KR1020130035930A

    公开(公告)日:2013-04-09

    申请号:KR1020120107972

    申请日:2012-09-27

    Abstract: PURPOSE: A negative electrode active material is provided to have high capacity with regard to the theoretical capacity of Si, thereby improving initial discharging capacity. CONSTITUTION: A negative electrode active material comprises a Si-Sn-Fe-Cu based alloy, and a Si phase has an area ratio of 35-80% based on total negative electrode active materials. The Si phase is dispersed in a matrix phase. The matrix phase contains a Si-Fe compound phase which is crystallized by the Si-phase; and Sn-Cu compound which surrounds the Si phase and the Si-Fe compound. The Si-Fe compound is crystallized with an area ratio of 35-90% in the total matrix phase. The matrix phase additionally contains Sn phase which is inevitably crystallized with a surface area of 15% or less. [Reference numerals] (AA) Structural image of an example 7; (BB) Compound phase of SnCu; (CC) Compound phase of SiFe; (DD) Si phase;

    Abstract translation: 目的:提供一种负极活性物质,以提高Si的理论容量,从而提高初始放电容量。 构成:负极活性物质由Si-Sn-Fe-Cu系合金构成,Si相的面积比为总负极活性物质的35〜80%。 Si相分散在基质相中。 基体相含有通过Si相结晶的Si-Fe化合物相; 和围绕Si相的Sn-Cu化合物和Si-Fe化合物。 Si-Fe化合物在总基质相中以35-90%的面积比结晶。 基体相另外含有不可避免地结晶的Sn相,其表面积为15%以下。 (附图标记)(AA)实施例7的结构图像; (BB)SnCu的复合相; (CC)SiFe的复合相; (DD)Si相;

Patent Agency Ranking