Abstract:
A disk drive includes a disk drive base, a disk, and a head stack assembly rotatably coupled to the base adjacent the disk surface of the disk. The disk drive includes an airflow channeling enclosure. The enclosure includes an airflow inlet disposed downstream of the head stack assembly and configured to receive the disk rotation induced airflow therethrough. The enclosure further includes an airflow channel extending along the disk surface from the airflow inlet. The enclosure further includes an outer wall extending along the disk surface from the airflow inlet and defining the airflow channel radially interior to the outer wall. The enclosure further includes an airflow outlet disposed upstream of the head stack assembly extending from the outer wall and the channel opposite the airflow inlet for modifying the disk rotation induced airflow passing from the channel.
Abstract:
A disk drive including a disk drive base. The disk drive further includes at least one rotatable disk which includes a disk surface extending to an outer disk edge. The disk drive further includes a head stack assembly rotatably attached to the disk drive base in operable communication with the disk. The disk drive further includes an airflow suppressor comb coupled to the disk drive base and stationary relative to the disk drive base during operation of the disk drive. The comb includes a comb body disposed adjacent to the outer disk edge, and at least one tine extending from the comb body along the disk surface for mitigating disk rotation induced airflow upon the head stack assembly adjacent to the disk surface.
Abstract:
A method and apparatus for calibrating a glide head and detector system performs a pre-screening to ensure the quality of the glide head and the piezoelectric sensor in the detection system. The glide head and the piezoelectric sensor detect a signal when the glide head makes contact with the disk, such as a magnetic recording disk. Calibration of the detection system utilizes a specially made bump disk that has asperities of desired height and size that protrude out of a flat disk surface. The glide head is flown over the bump disk, and by gradually reducing the disk spinning velocity, the head is brought closer to the disk and eventually into contact with the asperity. The onset of contact, as detected by the piezoelectric sensor, defines a disk spinning velocity for the head to fly at the desired height. In order to decouple the glide head flying characteristics and the piezoelectric quality and transfer function from other factors that affect the calibration of the detection system, laser pulses are directed at the glide head. Head vibrations are introduced in the glide head and detected by the piezoelectric sensor. The head excitations are recorded as a spectrogram in which the resonance frequencies are observed. From the amplitude and frequency readings, head resonance frequencies are identified and the piezoelectric sensor response is characterized. This allows the pre-screening of the head/sensor system and the decoupling of the glide head flying characteristics and the piezoelectric sensor quality from the asperity integrity effects on the calibration of the detection system.
Abstract:
A disk surface asperities tester including a glidehead member having a piezoelectric sensor fabricated directly on the glidehead member. The piezoelectric sensors are useful in applications utilizing 70%, 50%, 30%, or smaller glideheads. The invention discloses a method for manufacturing sensors utilizing microchip fabrication techniques to form the piezoelectric sensors directly on glidehead surfaces, including standard Al2O3.TiC glideheads. The fabricated piezoelectric sensors are used in combination with signal processors to detect and analyze asperities in a disk drive surface.
Abstract translation:一种盘表面粗糙度测试仪,包括直接在滑动构件上制造的具有压电传感器的滑动构件。 压电传感器可用于使用70%,50%,30%或更小的滑翔头的应用中。 本发明公开了一种使用微芯片制造技术制造传感器的方法,用于直接在滑动表面上形成压电传感器,包括标准Al 2 O 3 .TiC滑移头。 制造的压电传感器与信号处理器结合使用以检测和分析磁盘驱动器表面中的粗糙度。
Abstract:
A disk surface asperities tester including a glidehead member having a piezoelectric sensor fabricated directly on the glidehead member. The piezoelectric sensors are useful in applications utilizing 70%, 50%, 30%, or smaller glideheads. The invention discloses a method for manufacturing sensors utilizing microchip fabrication techniques to form the piezoelectric sensors directly on glidehead surfaces, including standard Al2O3.TiC glideheads. The fabricated piezoelectric sensors are used in combination with signal processors to detect and analyze asperities in a disk drive surface.
Abstract translation:一种盘表面粗糙度测试仪,包括直接在滑动构件上制造的具有压电传感器的滑动构件。 压电传感器可用于使用70%,50%,30%或更小的滑翔头的应用中。 本发明公开了一种使用微芯片制造技术制造传感器的方法,用于直接在滑动表面上形成压电传感器,包括标准Al 2 O 3 .TiC滑移头。 制造的压电传感器与信号处理器结合使用以检测和分析磁盘驱动器表面中的粗糙度。
Abstract:
A glide test head assembly optimized for glide avalanche testing. The glide test head assembly of the present invention includes air bearing surfaces formed with a negative crown, or slightly concave surface. The negative crown of the air bearing surfaces of the inventive glide test head lowers the hydrodynamic pressure between the glide test head assembly and a spinning disc for given disc rotational speeds, enabling the glide test head assembly to fly at a lower heights at a greater linear velocity, and thus with increased stability. The increased flying stability of the inventive glide test head assembly improves the correlation between true flying height and disc/head contact detection for glide avalanche testing.
Abstract:
There is provided a disk drive including a disk drive base, a disk rotatably coupled to the disk drive base, and a spindle motor attached to the disk drive base and configured to support the disk for rotating the disk with respect to the disk drive base. The disk drive further includes a filter component. The filter component includes a filter housing coupled to the disk drive base, and a pair of filter elements disposed within the filter housing for filtering disk rotation induced airflow. Each filter element includes a coarse section and a fine section, wherein the coarse section is positioned upstream of the fine section relative to a direction of the induced airflow.
Abstract:
A magnetic data recording medium substrate has a contact zone and a data zone. The contact zone is textured by forming multiple texturing features, each having a bell-shaped profile resembling a Gaussian curve. The features preferably are formed by pulsed laser energy applied to a glass substrate, or to an aluminum nickel-phosphorous substrate coated with a glass layer. As compared to previous laser texturing approaches, the laser beam is less narrowly focused to provide a beam impingement area with a diameter of at least three microns, forming texturing features with diameters of at least three microns. The texturing features preferably are uniform in height and diameter, and may be symmetrical or have asymmetrical aspects, so long as bell-shaped profiles are present in the direction of travel of the recording medium, relative to transducing heads.
Abstract:
A glide test head assembly glide test head assembly in which the mounting orientation of the piezo element has been modified. The glide test head assembly mounts the piezo element with one of its major surfaces coincident with the surface of the laterally-extending wing on which it is mounted. The mounting orientation of the piezo element allows the piezo element to be mounted fully on the laterally-extending wing of the glide test head assembly, raising the resonant frequency of the piezo element, decreasing the glide test head assembly's sensitivity to excitation caused by air flow disturbances, and increasing the reliability of glide test results.
Abstract:
A system for detecting and measuring the height of asperities on a substantially flat solid surface is disclosed. The system includes a glide head assembly for contacting asperities on the substantially flat solid surface and producing a sensor voltage whose frequency response is a function of both the height of the asperities and the location at which the glide head assembly contacts the asperities. The system also includes a signal processing device responsive to the sensor voltage from the glide head assembly for analytically defining a frequency window within which the frequency response of the sensor voltage is relatively independent of the location on the glide head assembly at which the glide head assembly contacts the asperities. The signal processing device measures the height of an encountered asperity by computing an actual RMS voltage within the frequency window of the frequency response of the sensor voltage produced by the glide head assembly after contacting the asperity.