摘要:
A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data, an intermediate frame buffer that receives the de-mapped physical channel data, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data, a CRC checker and an output buffer.
摘要:
A method of sending feedback information in a fast physical layer hybrid automatic repeat request (HARQ) for frequency division duplex communications that form an overall wireless communication system is described in which the received packets are acknowledged by transmitting feedback data to the sender, wherein the acknowledgement comprises the reservation of obtaining a plurality of slots in the uplink/downlink dedicated channel radio frame for the feedback data alone. It is also directed to the transmission of feedback data used in specified slots within each radio frame, wherein the first slot used is based upon the time offset between uplink and downlink channels, as well as based upon the time required for de-interleaving, de-ratematching, decoding and error checking. In an alternative embodiment, the method uses dedicated physical control channel (DPCCH) bits in at least some of the slots for transmitting such feedback data to the sender.
摘要:
A system includes a receiver for receiving a modulated signal. The receiver includes a gain estimator for converting complex data representative of constellation points of the modulated signal into scalar data representation. The gain estimator is configured to fold a first portion of the scalar data representation onto a second portion of the scalar data representation. The gain estimator is further configured to estimate a constellation gain value from the folded first portion and the second portion of the scalar data representation.
摘要:
A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data and a CRC checker to provide the decoded transport channel bits, and an output buffer to receive the decoded transport channel bits.
摘要:
A technique for allocating fingers in a path searcher of a multipath receiver involves determining a required number of fingers for each multipath region, determining a number of allocated fingers for each multipath region according to an area-based weighting scheme such that each multipath region that is allocated fewer than its required number of fingers is deemed to have a non-zero residual area, allocating any surplus fingers to multipath regions having non-zero residual areas until either no surplus fingers remain or each multipath region is allocated its required number of fingers, and placing any fingers allocated to each multipath region within the multipath region. Placing the fingers in un-resolvable path scenario involves detecting path location at the edges of multipath region; placing fingers at the edges and placing remaining fingers uniformly between the first and the last path such that the there is a minimum placement separation between the fingers.
摘要:
A method of sending feedback information in a fast physical layer hybrid automatic repeat request (HARQ) for frequency division duplex communications that form an overall wireless communication system is described in which the received packets are acknowledged by transmitting feedback data to the sender, wherein the acknowledgement comprises the reservation of obtaining a plurality of slots in the uplink/downlink dedicated channel radio frame for the feedback data alone. It is also directed to the transmission of feedback data used in specified slots within each radio frame, wherein the first slot used is based upon the time offset between uplink and downlink channels, as well as based upon the time required for de-interleaving, de-ratematching, decoding and error checking. In an alternative embodiment, the method uses dedicated physical control channel (DPCCH) bits in at least some of the slots for transmitting such feedback data to the sender.
摘要:
Systems and methods of data extraction in a vector processor are disclosed. In a particular embodiment a method of data extraction in a vector processor includes copying at least one data element to a source register of a permutation network. The method includes reordering multiple data elements of the source register, populating a destination register of the permutation network with the reordered data elements, and copying the reordered data elements from the destination register to a memory.
摘要:
A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data, an intermediate frame buffer that receives the de-mapped physical channel data, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data, a CRC checker and an output buffer.
摘要:
A wireless device has a BRP-CRP interface that includes a dual-port frame memory having a first access port and a second access port in which data can be written to the dual-port frame memory through the first access port at the same time that data is read from the dual-port frame memory through the second access port. A bit rate processor performs bit rate processing on input data and writes data resulting from the bit rate processing to the dual-port frame memory through the first access port. A chip rate processor reads data from the dual-port frame memory through the second access port and performs chip rate processing on the data read from the dual-port frame memory. A data processor executes a software application that writes data to the dual-port frame memory through the first access port and reads data from the dual-port frame memory through the second access port.
摘要:
A bit rate processor in a wireless system includes a front end processor to process physical channel data and to generate encoded transport channel data, a transport channel buffer to hold the encoded transport channel data, and a back end processor to process the encoded transport channel data from the transport channel buffer and to generate decoded transport channel bits. The front end process may include a frame buffer that receives the physical channel data, a first stage to de-map the physical channel data from the frame buffer, an intermediate frame buffer that receives the de-mapped physical channel data from the first stage, and a second stage to process the de-mapped physical channel data and to provide the encoded transport channel data. The back end processor may include a third stage, including a scaling circuit to scale the encoded transport channel data, a decoder to decode the scaled transport channel data and a CRC checker to provide the decoded transport channel bits, and an output buffer to receive the decoded transport channel bits.