Abstract:
An ellipsoidal reflector is provided for a light energy emitting lamp which is used as a heating element within an oven. Because an ellipsoidal reflector is used, the light energy emitting lamp may be positioned at the first focal point of the ellipsoidal reflector in order to concentrate light reflected by the ellipsoidal reflector on the food being cooked. Accordingly, a charbroiled surface effect common to gas or electric cooking grills is produced. The light energy emitting lamp may also be moved away from the first focal point so that light is reflected by the ellipsoidal reflector more uniformly.
Abstract:
A module for use in a heating appliance has a frame with first, second, third, and fourth sides. A first heating lamp is mounted substantially along the first side of the frame, a second heating lamp is mounted substantially along the second side of the frame, a third heating lamp mounted substantially along the third side of the frame, and an fourth heating lamp is mounted substantially along the fourth side of the frame. Fifth, sixth, seventh, and eighth heating lamps are mounted substantially diagonally to the frame. A first reflector reflects radiant energy from the first heating lamp, a second reflector reflects radiant energy from the second heating lamp, a third reflector reflects radiant energy from the third heating lamp, and a fourth reflector reflects radiant energy from the fourth heating lamp. A fifth reflector reflects radiant energy from the fifth, sixth, seventh, and eighth heating lamps. The first, second, third, and fourth reflectors are generally parabolic reflectors, and the fifth reflector is a formed reflector.
Abstract:
A combination cooking appliance controls a radiant heating element provided in an oven cavity, both a blower and a convection heating element provided in an air plenum, and microwave energy sources to provide for numerous potential operating modes. The present invention is particularly concerned with the manner in which the various cooking components are configured and flexibly controlled to provide for short cook cycles in a variety of operational modes.
Abstract:
A cooking appliance includes an outer cabinet within which is provided an oven cavity which can be selectively accessed by movement of a door mounted through a door linkage system which enables the door to be shifted between opened and closed positions through either sliding or tilting movements. In particular, the door can be automatically or manually shifted between open and closed positions, through either the sliding or tilting motions. In accordance with another aspect of the invention, the door can be automatically opened at the end of a process or cooking cycle, or manually opened.
Abstract:
A cooking appliance includes an outer cabinet within which is provided an oven cavity which can be selectively accessed by movement of a door mounted through a door linkage system which enables the door to be shifted between opened and closed positions through either sliding or tilting movements. In particular, the door can be automatically or manually shifted between open and closed positions, through either the sliding or tilting motions. In accordance with another aspect of the invention, the door can be automatically opened at the end of a process or cooking cycle, or manually opened.
Abstract:
A clothes dryer has a plurality of high energy lamps. The high energy lamps are mounted so as to emit high energy radiation toward a drying chamber. A blower is arranged to move air to the plurality of high energy lamps so as cool the high energy lamps. The air that cools the high energy lamps is delivered to the drying chamber. The plurality of high energy lamps is operated to emit ultraviolet energy for sanitizing the articles in the drying chamber and to emit infrared energy for drying the articles in the drying chamber.
Abstract:
A gas convection oven having a radiant burner and fuel feeding apparatus which enables the single burner to be operated in either a broil mode or a bake mode. In the broil mode, the radiant burner is operated in conventional manner with the flame being held by an inner screen to heat the outer screen to a radiant luminous temperature. In the bake mode, forced air is injected into the burner by a fan thereby providing a leaner fuel-air mixture with higher velocity. As a result, the flame burns outside the outer screen of the burner with the outer screen serving as a flame holder. Therefore, hot combustion gases as produced while the outer screen remains non-luminous.
Abstract:
In a broad aspect, the invention is a conveyorized oven for heating food products comprising: a cavity having two continuous access openings; a convection heating source, the convection heating source including a heating element, a blower, and a plenum in communication with the cavity, the convection heating source providing heated air to the cavity; an upper radiant energy heating source in communication with the cavity, the upper radiant energy heating source including an infrared light source and at least one reflector providing radiant energy to the cavity; a lower radiant energy heating source in communication with the cavity, the lower radiant energy heating source providing radiant energy to the cavity; and a conveyor system for transporting food products through the first continuous access opening, the cavity, and the second continuous access opening at a rate of speed sufficient to allow the food products to be heated.
Abstract:
A combination cooking appliance controls a radiant heating element provided in an oven cavity, both a blower and a convection heating element provided in an air plenum, and microwave energy sources to provide for numerous potential operating modes. The present invention is particularly concerned with the manner in which the various cooking components are configured and flexibly controlled to provide for short cook cycles in a variety of operational modes.
Abstract:
A cooking appliance includes a heating system capable of combining radiant, convection, microwave and conduction heating techniques to perform a cooking operation. The cooking appliance includes a cooking chamber and a bifurcated air plenum having an angled divider that defines a tapered air delivery portion and a tapered exhaust portion. The tapered air delivery portion actually guides a convective air flow through an air emitter plate positioned at a top of the cooking chamber. The air emitter plate includes a recessed, serpentine-like channel having a plurality of openings that lead to the air delivery portion. A radiant heating element is nested within the recessed channel. The cooking appliance further includes a convection fan, as well as a magnetron having a rotatable antenna positioned below the cooking chamber and a conductive plate upon which food to be cooked is supported.