Abstract:
This disclosure describes systems, methods, and devices related to enhanced transmission. A device may generate an aggregated medium access control protocol data unit (A-MPDU) frame, wherein the A-MPDU is associated with transmission of n Network Coding (NC) encoded frames. The device may divide the A-MPDU frame into k data frames and (n−k) parity frames within the A-MPDU frame. The device may transmit the k data frames. The device may transmit to a station device (STA) at least one of the (n−k) parity frames separately after the data frames in response to packet drops in the k data frames.
Abstract:
This disclosure describes systems, methods, and devices related to enhanced bandwidth selection for wireless devices. A device may generate a request frame with at least one of a first indication of a bandwidth for which a second device is to measure a first noise level or a second indication of a resource unit for which the second device is to measure a second noise level. The device may send the request frame to the second device. The device may identify a response frame received from the second device, the response frame having a third indication of the first noise level or the second noise level and a fourth indication of the bandwidth or the resource unit. The device may determine, based on the first noise level or the second noise level, a parameter associated with a subsequent frame to send to the second device.
Abstract:
The present application discloses devices, systems and methods for establishing and utilizing a UV sensing network to harness the efficacy of distributed UV sensing to produce improved accuracy of UV exposure measurement using mobile devices. This may be accomplished by “crowd sourcing”, i.e. having multiple devices work collaboratively to measure the UV exposure. The collaboration can be implemented in many potential ways, such as, using a server based architecture where devices connect to a specific “UV measurements server” to provide measurements and receive aggregate estimated exposure levels, and/or by using a peer-to-peer architecture, where devices in a specific region creates a local ad-hoc UV sensing network.
Abstract:
A novel and useful apparatus for and method of coordinating the allocation of transmission and reception availability and/or unavailability periods for use in a communications device incorporating collocated multiple radios. The mechanism provide both centralized and distributed coordination to enable the coordination (e.g., to achieve coexistence) of multiple radio access communication devices (RACDs) collocated in a single device such as a mobile station. A distributed activity coordinator modifies the activity pattern of multiple RACDs. The activity pattern comprises a set of radio access specific modes of operation, (e.g., IEEE 802.16 Normal, Sleep, Scan or Idle modes, 3GPP GSM/EDGE operation mode (PTM, IDLE, Connected, DTM modes), etc.) and a compatible set of wake-up events, such as reception and transmission availability periods. To prevent interference and possible loss of data, a radio access is prevented from transmitting or receiving data packets while another radio access is transmitting or receiving. In the event two or more RATs desire to be active at the same time, the mechanism negotiates an availability pattern between the MS and a corresponding BS to achieve coordination between the RATs.
Abstract:
A novel and useful apparatus for and method of I/Q gain mismatch compensation for use in a communications receiver. The invention is operative to calculate an estimate of the I/Q gain mismatch. Each input sample is subsequently multiplied by the inverse of the estimate to generate compensated samples. The training sequence portion of the uncompensated input samples is used to generate the I/Q gain mismatch estimate. In accordance with the present invention, the H matrix used in calculating the gain mismatch estimate is pre-calculated for several channel lengths and stored in memory. An estimate of the channel is generated which provides the channel length and the location in the input sample buffer of the first training sequence sample to be used in calculating the gain mismatch estimate. The channel length is used to determine the number of training sequence samples to be used and to select one of the previously calculated H matrices.
Abstract:
An apparatus for and method of generating soft decision information from a sequence of hard symbol decisions output from a decoder in a concatenated communications receiver. Soft symbol decisions are computed given hard symbol decisions from the equalizer, channel estimation information (i.e. FIR filter taps used to estimate the channel), and the input samples received from the channel. The log likelihood ratio (LLR) for all symbol possibilities is calculated by computing the conditional probability of the input sample sequence given the hard symbol decision sequence. The noise variance is optionally used in computing the soft output values, thus improving the overall performance of the receiver. In one embodiment, symbol vectors are calculated beforehand and stored in a table. An error vector calculator functions to calculate an error vector that is applied to soft output calculation units. Each soft output calculation unit functions to generate a soft output value for a particular symbol candidate.
Abstract:
This disclosure describes systems, methods, and devices related to scheduling asynchronous transmissions by other access point (AP) devices in a multi-AP environment. A method may include a coordinating AP identifying a first time for a first coordinated AP device to send a first physical layer (PHY) protocol data unit (PPDU) using a first frequency segment; identifying a second time different than the first time for a second coordinated device to send a second PPDU using a second frequency segment; generating one or more frames comprising indications that the first AP device is to send the first PPDU using the first frequency segment and that the second AP device is to send the second PPUD using the second frequency segment; and causing to send the one or more frames to the first coordinated AP device and the second coordinated AP device.
Abstract:
An access point station (AP) communicates with a plurality of non-AP stations (STAs) within a synchronized transmission opportunity (S-TXOP). The S-TXOP may comprise an S-TXOP trigger followed by a plurality of S-TXOP slots. After transmission of the S-TXOP trigger, the AP may encode, for transmission within an S-TXOP slot, a downlink (DL) multi-user physical layer protocol data unit (DL MU-PPDU). The DL MU-PPDU may include a preamble followed by a data field. To indicate that a previously signaled resource unit (RU) allocation is to be used during the S-TXOP slot, the AP may encode the preamble to include an allocation ID of the previously signaled RU allocation in a signal field (SIG) of the preamble and to include a SIG-2 presence indicator to indicate that a second signal field (SIG-2) is not included in the preamble.
Abstract:
Apparatuses, methods, and computer readable media for channel bonding and bonded channel access. The apparatus comprising processing circuitry configured to: gain access to a first 10 MHz channel and to a second 10 MHz channel, and encode a physical layer (PHY) protocol data unit (PPDU) for transmission over a bonded channel, the bonded channel comprising the first 10 MHz channel and the second 10 MHz channel, where the PPDU is encoded to comprise a legacy preamble portion to be transmitted on the first 10 MHz channel and a repeated legacy preamble portion to be transmitted on the second 10 MHz channel, the PPDU further including a non-legacy portion, the non-legacy portion comprising a non-legacy signal field indicating a modulation and coding scheme (MCS) used to encode a data portion of the non-legacy portion, the data portion to be transmitted on the bonded channel.
Abstract:
Embodiments of a high efficiency (HE) access point (HE AP) and HE station (HE STA) are generally described herein. The HE AP may transmit a frame that includes a transmit power envelope element to indicate local maximum transmit power constraints for an operating bandwidth of the HE AP on a per-segment basis. The operating bandwidth may be configurable for division into segments of a configurable segment size. The transmit power envelope element may include: a transmit power information field that includes: a local maximum transmit power count subfield that indicates the operating bandwidth, and a segment size subfield that indicates the segment size; and for each of the segments, a local maximum transmit power per segment field that indicates a local maximum transmit power for the segment.