摘要:
A code symbol reading device includes a portable housing that contains a source of optical energy. This optical energy is projected into a scan field external to the housing and is incident upon a code symbol situated on an object located within the scan field. Optical energy reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected optical energy. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is constructed and then used to modulate an electromagnetic carrier signal that is transmitted to a base unit. At the base unit, the carrier signal is demodulated and the data packet is recovered. The received data packet is processed to recover the symbol character data, and an acknowledgment signal is generated to acknowledge the receipt of the symbol character data at the base unit.
摘要:
A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
摘要:
An optical reader for decoding an encoded symbol character of a symbology includes a scan data signal processor having as an input a scan data signal encoding information representative of the encoded symbol character. The scan data signal processor includes a first time delay stage adapted to provide a primary phase waveform from the scan data signal, a second time delay stage adapted to provide an early phase waveform from the scan data signal, and a third time delay stage adapted to provide a delayed phase waveform from the scan data signal. The early phase waveform has a propagation delay less than the primary phase waveform, and the delayed phase waveform has a propagation delay greater than the primary phase waveform. The scan data signal processor further includes a peak window detection stage for generating a peak window timeframe when an amplitude of the primary phase waveform is greater than, less than, or equal to both an amplitude of the early phase waveform and the delayed phase waveform. The optical reader further includes a digitizer circuit adapted to accept, within the peak window timeframe, the scan data signal processor output.
摘要:
An optical reader for decoding an encoded symbol character of a symbology includes a scan data signal processor having as an input a scan data signal encoding information representative of the encoded symbol character. The scan data signal processor includes a first time delay stage adapted to provide a primary phase waveform from the scan data signal, a second time delay stage adapted to provide an early phase waveform from the scan data signal, and a third time delay stage adapted to provide a delayed phase waveform from the scan data signal. The early phase waveform has a propagation delay less than the primary phase waveform, and the delayed phase waveform has a propagation delay greater than the primary phase waveform. The scan data signal processor further includes a peak window detection stage for generating a peak window timeframe when an amplitude of the primary phase waveform is greater than, less than, or equal to both an amplitude of the early phase waveform and the delayed phase waveform. The optical reader further includes a digitizer circuit adapted to accept, within the peak window timeframe, the scan data signal processor output.
摘要:
An automated tunnel-type scanning system arranged about a conveyor belt structure, including: a tunnel structure arranged about a conveyor belt structure for transporting packages; an omni-directional bar code symbol scanning subsystem; a package detection and dimensioning subsystem; and a data management subsystem. The package detection and dimensioning subsystem captures package measurement information about each detected package prior to the package being scanned by the omni-directional bar code symbol reading subsystem, and producing package measurement data representative of the captured package measurement information. The data management subsystem collects and queues package identification data and package measurement data, and automatically correlates both package measurement data and package identification data corresponding to each package transported through the tunnel structure so as to enable automated tracking and identification of packages being transported therethrough, in either singulated or non-singulated arrangements.
摘要:
An automated package dimensioning subsystem comprising a Laser Detecting and Ranging (LADAR-based) scanning apparatus for capturing two-dimensional range data maps of the space above a conveyor structure, along which packages are transported, and an image contour tracing apparatus for extracting package dimension data from the two-dimensional range data maps.
摘要:
An automated tunnel-type scanning system arranged about a conveyor belt structure, including: a tunnel structure arranged about a conveyor belt structure for transporting packages; an omni-directional bar code symbol scanning subsystem; a package detection and dimensioning subsystem; and a data management subsystem. The package detection and dimensioning subsystem captures package measurement information about each detected package prior to the package being scanned by the omni-directional bar code symbol reading subsystem, and producing package measurement data representative of the captured package measurement information. The data management subsystem collects and queues package identification data and package measurement data, and automatically correlates both package measurement data and package identification data corresponding to each package transported through the tunnel structure so as to enable automated tracking and identification of packages being transported therethrough, in either singulated or non-singulated arrangements.
摘要:
An automated package dimensioning subsystem comprising a Laser Detecting and Ranging (LADAR-based) scanning apparatus for capturing two-dimensional range data maps of the space above a conveyor structure, along which packages are transported, and an image contour tracing apparatus for extracting package dimension data from the two-dimensional range data maps.
摘要:
A code symbol reading device includes a portable housing that contains a source of optical energy. This optical energy is projected into a scan field external to the housing and is incident upon a code symbol situated on an object located within the scan field. Optical energy reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected optical energy. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is constructed and then used to modulate an electromagnetic carrier sign that is transmitted to a base unit. At the base unit, the carrier signal is demodulated and the data packet is recovered. The received data packet is processed to recover the symbol character data, and an acknowledgment signal is generated to acknowledge the receipt of the symbol character data at the base unit.
摘要:
A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.