Abstract:
Present invention deals with cost-effective surface-modified zeolite materials developed from commercial zeolites and flyash-based zeolites by treating with surface modifiers like hexadecyltrimethyl ammonium bromide (HDTMA-Br). The formation of zeolitic materials with anionic characteristics requires treatment with a surfactant with initial concentrations greater than its critical micelle concentration (CMC). The sorption of oxyanions on the surfactant-modified zeolite (SMZ) is attributed to surface complexation and surface precipitation. Incorporation of metal ions on SMZ showed improved anion uptake for dearsenification of water due to synergistic effects and is able to meet the stringent target of 10 ppb of As on potable water being adopted by most countries. High selectivity, faster kinetics and high adsorption capacity ensures cost effectiveness of this product as compared to other low-cost products for dearsenification. Zeolite analogues with anionic characteristics have been developed for their applications for removal of arsenic from water. The material developed can also be used to remove other anions like chromium and selenium.
Abstract:
The present invention is related to a process for generation of hydrogen and syngas based on biomimetic carbonation and photocatalysis. A path breaking way has been developed for generation of solar fuels in specific hydrogen by coupling biomimetic carbonation with photocatalysis. Efforts are being made worldwide to mimic the reaction for fixation of anthropogenic CO2 into calcium carbonate using carbonic anhydrase (CA) as a biocatalyst. CA is being employed to accelerate the rate of hydration of CO2 to form carbonate ions and proton. Presently carbonate is being precipitated from aqueous solution as calcium carbonate given a suitable saturation of calcium and carbonate ions by addition of appropriate buffer. A major breakthrough in the area of generation of solar fuels like hydrogen has been achieved by coupling biomimetic carbonation with photocatalysis. This approach may prove to be a revolutionary technical advancement required for hydrogen economy demanding carbon neutral hydrogen production. Also the production of hydrogen in addition to carbonates as end products during biomimetic carbonation may make the process commercially viable to be adopted by industries emitting carbon dioxide. The carbonate rich stream has been photocatalytically reduced to formaldehyde. This breakthrough thus opens new horizons in the area of carbon sequestration by virtue of the fact that end product of carbon sequestration is not only environmentally benign product of calcite but it would lead to the generation of clean energy including hydrogen, methane and methanol. Maximum hydrogen evolution has been observed up to 101.14 μmoles/mg of, free CA, 156.8 μmoles/mg of immobilised CA and 101.14 μmoles/mg of CA 6684.5 μmoles/mg of stabilised CA using TiO2/Zn/Pt as photocatalyst. The problem of using Zn as a metal donor has been overcome by illuminating the system. Hydrogen evolution to the tune of 84 μmoles/mg of CA has been observed for system with Zn as metal donor in the presence of Pt as co-catalyst with illumination.
Abstract:
Present invention deals with cost-effective surface-modified zeolite materials developed from commercial zeolites and flyash-based zeolites by treating with surface modifiers like hexadecyltrimethyl ammonium bromide (HDTMA-Br). The formation of zeolitic materials with anionic characteristics requires treatment with a surfactant with initial concentrations greater than its critical micelle concentration (CMC). The sorption of oxyanions on the surfactant-modified zeolite (SMZ) is attributed to surface complexation and surface precipitation. Incorporation of metal ions on SMZ showed improved anion uptake for dearsenification of water due to synergistic effects and is able to meet the stringent target of 10 ppb of As on potable water being adopted by most countries. High selectivity, faster kinetics and high adsorption capacity ensures cost effectiveness of this product as compared to other low-cost products for dearsenification. Zeolite analogues with anionic characteristics have been developed for their applications for removal of arsenic from water. The material developed can also be used to remove other anions like chromium and selenium.