摘要:
The present application discloses a method and apparatus for controlled device selection by a portable electronic device (110). The method may include transmitting, from the portable electronic device, a first wireless signal (140) requesting information corresponding to remote controlled devices (132, 134, 136, 138), sending an optical signal (150) over the air to at least one remote controlled device, receiving a second wireless signal including information corresponding to at least one specific remote controlled device in response to sending the optical signal, adjusting settings, in response to receiving the second wireless signal, on the portable electronic device to enable remote control of at least one selected remote controlled device (134) of the at least one specific remote controlled device based on the information corresponding to the at least one specific remote controlled device.
摘要:
One facilitates determination of a path that comprises a plurality of specific locations (201). In an optional though preferred embodiment these specific locations comprise locations where a given functional ink will preferably be printed using a continuous printing spray. Also in an optional though preferred embodiment this path will also avoid at least one predetermined area (701) where such a functional ink should not be printed. In a preferred approach this process (100) generally provides for identifying (101) these specific locations and further identifying (102), when applicable, the one or more predetermined areas to be avoided. This process then preferably uses a processor to effect at least one (and preferably both) of using (103) a genetic algorithm to identify a preferred path that includes the plurality of specific locations and using (104) an A* algorithm to process a candidate path to provide a selected path that includes the plurality of specific locations while also avoiding the at least one predetermined area.
摘要:
A headpiece (101) has at least one pedometer accelerometer (102) integrally disposed with respect to the headpiece (101) and a personal communications device interface (103) operably supported by the headpiece (101). By one approach, the headpiece (201) has an earpiece having at least one audio transducer (204). By another approach, the pedometer accelerometer (402) is disposed substantially dorsally with respect to the user's head (413) when the headpiece (401) is supported by the user's head (413).
摘要:
An object (201) (such as a containment mechanism) supports both a functional electrical circuit (203) and an electrical circuit (202) to which the functional electrical circuit is responsive. In a preferred approach the functional electrical circuit has both a low power state of operation and a higher power state of operation. Upon detecting (104) that an area of connectivity of the electrical circuit has been severed (via, for example, corresponding manipulation of the object itself), the functional electrical circuit responsively operates (106) using the higher power state of operation.
摘要:
An energizable design image portion (203) of a provided design pattern is printed on a provided substrate (201) using a functional ink comprised of at least one energy emissive material. A passive design image portion (202) of that design pattern is then also printed on that substrate using at least one graphic arts ink. In a preferred embodiment this apparatus may further comprise electrically conductive electrodes (204) on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
摘要:
A wireless biopotential sensor includes an adhesive strip having a lower surface for placement against the skin of a patient and an upper surface. A pair of conductive electrodes are applied to the lower surface of the adhesive strip. A sensor substrate is applied to the upper surface. The sensor substrate includes first and second conductive contact pads that are placed in registry with the pair of conductive electrodes, with the contact pads arranged in electrical contact with the conductive electrodes. An electronics module is applied to the sensor substrate and arranged in electrical contact with the contact pads. The electronics module comprises a power supply and electronics for generating a wireless signal containing biopotential signals detected by the pair of conductive electrodes.