Abstract:
The invention relates to a nozzle (10) for mixing a gaseous fluid such as air and a liquid such as water and for ejecting an atomized mist of liquid droplets. The nozzle includes a nozzle body defining first (60), second (44) and third (52) annular passages along the length thereof. Pressurized fluid is introduced into the first annular passage (60) and a first restricted annular orifice (68) leads from the first annular passage (60) to the third annular passage (52). Liquid is introduced into the second annular passage (44) and a second restricted annular orifice (48) leads from the second annular passage (44) to the third annular passage (52). Liquid and gaseous fluid are aggressively mixed in the third annular passage (52). A third restricted annular orifice (72) leads from the third annular passage (52) to atmosphere such that mixed liquid and gaseous fluid are forcibly ejected from the nozzle through the third restricted annular orifice (72), the liquid being atomized in small controlled droplets in the ejected gaseous fluid.
Abstract:
An atomizing nozzle primarily designed for agricultural spraying has a narrow and controlled droplet size distribution and the ability to shape the spray into a solid cone or fan for evenly applying the spray to the crops. The nozzle is able to operate at low air delivery pressures, in the order of 10 to 30 in. of water column. A central air delivery bore communicates with an air manifold within a boom. Near the exit plane of the throat there is provided an inlet conduit connected to the liquid to be sprayed, the conduit being at right angles to the bore axis. An outlet nozzle from the conduit is positioned on the bore axis and has its exit plane upstream of the exit plane of the bore so that atomization of the liquid will take place within the central bore between the two exit planes. A pair of shaping nozzles are connected to secondary bores that in turn communicate with the manifold. The shaping nozzles are directed orthogonally to the central bore axis and to the inlet conduit and are located downstream of the exit plane of the central bore. The jets issuing from the shaping nozzles shape the cone-shaped spray into a generally fan-shaped configuration. Because the shaping jets are always at the same pressure as the atomization air the dispersion of the droplets exiting the nozzle will be consistent and the spray pattern will be constant over the operating pressure range of the apparatus.
Abstract:
An improved process is described for agglomerating ground coal in which a bridging oil is used as the agglomerating vehicle. This bridging oil is a mixture of a heavy gas oil obtained from coal/oil coprocessing and a heavy hydrocarbon oil, such as bitumen or heavy oil, preferably mixed in the proportion of about 23-40% heavy hydrocarbon oil and 60-77% heavy gas oil. The agglomerated product is mixed with additional heavy oil or bitumen and it becomes the feedstock to a coal/oil coprocessor, with heavy gas oil being formed as one of the product streams. At least part of this heavy gas oil product stream is recycled to the agglomeration stage as the heavy gas oil component of the bridging oil. This agglomeration procedure has the advantage of providing an agglomerate of excellent quality, while carrying out the agglomeration in a short time at ambient temperature and using less than 10% by weight of bridging oil.
Abstract:
A stacked permeable membrane envelope assembly comprises two clamping plates with spaced, permeable membrane envelope assemblies clamped between them on frames. Each membrane envelope comprises two membrane covered, perforated plates clamped together to provide inner permeate chambers and outer feed fluid passages. Fluid distributing and permeable membrane sealing collars are provided comprising two annular plates with a radially scalloped, stiff-spring-like, channel separator ring located between them. The annular plates seal the membranes against the dished plates around feed fluid passages through the envelope assemblies while the radial scallops form passages for fluid to flow between adjacent membrane envelopes.