Abstract:
There is described a laser scanning indicia reading terminal comprising a variable setting imaging lens having a first setting at which the terminal has a first plane of optimum focus and a second setting at which the terminal has a second plane of optimum focus. According to one embodiment a first predetermined scanning width can be associated to the first lens setting and a second scanning width can be associated to the second lens setting such that the terminal with the lens setting set to the first setting scans to a first width and with the lens setting set to a second setting scans to a second width. In addition to or in place of the scan width operational parameters different operational parameters can be associated to the respective first and second lens settings.
Abstract:
Embodiments of the present invention are directed to document processing, and more particularly to systems and methods that can utilize relative positions between the content of the document and a decodable indicia affixed to the document. In one embodiment, indicia reading terminals are provided that include an imaging module for capturing a frame of image data of a document. The document can include one or more decodable indicia such as a form barcode and various content fields, which delineate particular content of the document. The form barcode can include information respecting the form design and form design data. This information can be used to process the content of the document such as by providing coordinates or similar location and positioning metrics for use in processing the content of the document. In one example, the frame of image data is analyzed to identify the form barcode, from which the relative location of the content fields can be discerned without extensive processing of the frame of image data.
Abstract:
A method of operating an indicia reader adapted to read information bearing indicia (IBI) is accomplished by putting the indicia reader in a set up mode to enable the indicia reader to read N types of user usage IBIs; reading at least one user usage IBI with the indicia reader that is one of the N types of IBI the indicia reader is enabled to read; configuring the indicia reader in accordance with the at least one IBI read while the indicia reader is in the set up mode; putting the indicia reader into a use mode and reading user usage IBIs of the type read while the indicia was in the set up mode.
Abstract:
There is set forth herein an indicia reading terminal comprising an image sensor pixel array having a plurality of pixels, the plurality of pixels including a first set of pixels and a second set of pixels, the first set of pixels having wavelength selective filters transmitting light of a first wavelength, the second set of pixels having wavelength selective filters transmitting light of a second wavelength. The indicia reading terminal can include an optical imaging assembly for focusing imaging light rays onto the image sensor pixel array, the optical imaging assembly being adapted so that for light rays of the first wavelength the optical imaging assembly has a first focus range and for light rays of the second wavelength the optical imaging assembly has a second focus range.
Abstract:
There is described an image sensor based indicia reading terminal comprising a variable setting imaging lens having a first setting at which the terminal has a first plane of optimum focus and a second setting at which the terminal has a second plane of optimum focus. According to one embodiment, a first predetermined picture size where picture size is determined according to a number of pixels subject to read out, can be associated to the first lens setting and a second picture size can be associated to the second lens setting such that the terminal with the lens setting set to the first setting reads out a frame of a first picture size and with the lens setting set to a second setting reads out a frame of a second picture size. In addition to or in place of the picture size operational parameters, different operational parameters can be associated to the respective first and second lens settings. Additionally or alternatively, different processes for determining an operational parameter and/or different algorithms for determining an operational parameter can be associated to each of the first and second lens settings.
Abstract:
A mobile communication terminal can comprise a housing, a microprocessor disposed within the housing, a display incorporated into the housing, and a communication interface communicatively coupled to the microprocessor. The mobile communication terminal can be configured, responsive to receiving a byte sequence representing a character string containing one or more alphanumeric or non-alphanumeric characters, to encode the byte sequence into one or more bar code symbols having a minimum dimension of a smallest element equaling or exceeding a readability threshold value. The mobile communication terminal can be further configured to display the bar code symbols.
Abstract:
The invention relates to a microprocessor-based decoder board for an optical reader having in one embodiment a plurality of imaging modules that provide frames of image data having a plurality of formats. In one method for operating the decoder board of the invention, and a multiple imaging module reader comprising the decoder board, a frame of image data captured by a selected imaging module is decoded. The decoder board determines the format of the frame of image data from information about which of the plurality of imaging modules provided the frame of image data or from information about the frame of image data, activates as necessary a command to prepare the decoder board to decode the frame of image data according to the format provided by the imaging module, and performs the decoding.
Abstract:
A digital image reading system including an image sensor and a computer that is programmed to adjust the frame rate of the image sensor, and to obtain a maximum frame rate of the image sensor for obtaining an acceptable image. An algorithm for adjusting the frame rate evaluates image parameters and calculates new exposure times, gain values, and exposure settings to support a maximum frame rate of the image sensor. A process for obtaining an acceptable image with an image reader evaluates an image signal level and adjusts the frame rate if the signal level is outside of a predetermined range. The process adjusts the image sensor to run at a maximum operational frame rate. A digital image reading system including multiple separate digitizers for use in various read environments and under various read conditions.
Abstract:
The invention is a system and method for providing optimized accuracy and precision in analog-to-digital conversions of data. In an embodiment of the invention, an A/D converter is configured by setting two separately definable reference voltages that are controlled by a microprocessor. The A/D converter range is as wide as, or slightly greater than, a dynamic range of the analog signal to be converted. The microprocessor adjusts at least one reference voltage. The A/D converter receives analog signals from a sensor. The dynamic range of the signal from the sensor, or the sensor operating conditions, are used to define the reference voltages. The converted data is provided to a data processor at a rate controlled by a clocking signal. In a method according to the invention, the A/D converter is operated using the features described above. The accuracy and the precision of the converted data are thereby optimized.
Abstract translation:本发明是一种用于在数字模数转换中提供优化的精度和精度的系统和方法。 在本发明的一个实施例中,通过设置由微处理器控制的两个可分离定义的参考电压来配置A / D转换器。 A / D转换器的范围与要转换的模拟信号的动态范围一样宽或稍大。 微处理器调整至少一个参考电压。 A / D转换器从传感器接收模拟信号。 来自传感器的信号或传感器工作条件的动态范围用于定义参考电压。 转换的数据以时钟信号控制的速率提供给数据处理器。 在根据本发明的方法中,使用上述特征来操作A / D转换器。 由此优化转换数据的精度和精度。
Abstract:
The invention is a multiterminal data collection network including a plurality of terminals and a base station configured so that each data collection terminal can be programmed in accordance with one of a predetermined number of available application. When a data collection terminal such as a bar code reader is programmed to operate in accordance with a particular application, the reader operates according to a data collection protocol that is the same as the data collection protocol of each other reader in the network programmed to operate in accordance with that same application. In another aspect of the invention, a base station normally transmits messages received from different readers according to different transmission protocols if the readers are programmed to operate in accordance with different applications, and transmits messages received from different readers according to the same protocol if the readers are programmed in accordance with the same application. A reader of the network can be associated with a new application group by reading of a specially designed application selector symbol.