摘要:
A radio transmission method and a wireless transmission system comprising multiple transmitter and receiver antennae simultaneously operating within the same frequency range and space-time encoders and decoders. Data transmission and channel matrix measurement can take place synchronously. Characteristic pilot signals that are unequivocally recognizable are superimposed with low noise on the data subsignals in the transmitter and are used in the receiver for the analog measurement of the channel matrix in a weighting unit and for the analog recovery of the transmitted data subsignals from the received signals. The measured analog values are digitally processed in a signal processor. The weightings thus determined are then summed in an analog signal processing unit.
摘要:
A radio transmission method and a wireless transmission system comprising multiple transmitter and receiver antennae simultaneously operating within the same frequency range and space-time encoders and decoders. Data transmission and channel matrix measurement can take place synchronously. Characteristic pilot signals that are unequivocally recognizable are superimposed with low noise on the data subsignals in the transmitter and are used in the receiver for the analog measurement of the channel matrix in a weighting unit and for the analog recovery of the transmitted data subsignals from the received signals. The measured analog values are digitally processed in a signal processor. The weightings thus determined are then summed in an analog signal processing unit.
摘要:
According to the invention, a method for reducing interference in a radio communication system is proposed, wherein a user terminal is equipped with at least two antennas for receiving at least two signal streams using a space-time processing technique, wherein the at least two signal streams are received from at least two transmit antennas of at least two base stations, and wherein the at least two signal streams are distinguished by orthogonal sequences.
摘要:
The invention relates to a signal processing method which optimizes the bit error rate under pragmatic conditions. The signalling method is optimally matched to the radio channel, variable with time, in rapid sequence by means of linear operations. Uplink and downlink transmission sides are determined by an excess of antennae on the downlink transmission side. The estimations of the channel matrix in the one transmission direction, necessary for the matching of the transmitter, can, in the absence of common-channel distortions with the condition of channel reciprocity, be directly obtained from the estimations for the other transmission direction. By a suitable linear combination of the transmission signals and, optionally, also the received signals, an error-free bi-directional transmission of data streams can be achieved in Rayleigh and Rice channels with significantly lower transmission powers than in purely receiver-side linear signal processing.