SUB-DIFFRACTION IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES
    2.
    发明申请
    SUB-DIFFRACTION IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES 审中-公开
    子衍射图像分辨率和其他成像技术

    公开(公告)号:US20130001436A1

    公开(公告)日:2013-01-03

    申请号:US13551357

    申请日:2012-07-17

    Abstract: The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The entities may be immobilized relative to each other and/or to a common entity. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction limit image resolution, computer programs and techniques for sub-diffraction limit image resolution, methods for promoting sub-diffraction limit image resolution, methods for producing photoswitchable entities, and the like.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率和其它成像技术。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。 实体可以相对于彼此和/或共同实体被固定。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,具有次衍射极限分辨率。 因此,可以使用这些方法,例如确定相对于共同实体(例如表面)或生物实体(例如DNA,蛋白质,细胞,组织等)固定的两个或多个实体的位置。 实体也可以相对于时间来确定,例如确定时变反应。 本发明的其他方面涉及用于副衍射极限图像分辨率的系统,用于副衍射极限图像分辨率的计算机程序和技术,用于促进副衍射极限图像分辨率的方法,用于产生可照片开关实体的方法等。

    SUB-DIFFRACTION LIMIT IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES
    3.
    发明申请
    SUB-DIFFRACTION LIMIT IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES 审中-公开
    子衍射限制图像分辨率和其他成像技术

    公开(公告)号:US20100297777A1

    公开(公告)日:2010-11-25

    申请号:US12850586

    申请日:2010-08-04

    Abstract: The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined The entities may be immobilized relative to each other and/or to a common entity. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction limit image resolution, computer programs and techniques for sub-diffraction limit image resolution, methods for promoting sub-diffraction limit image resolution, methods for producing photoswitchable entities, and the like.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率和其它成像技术。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。可以相对于彼此和/或共同实体来固定实体。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,具有次衍射极限分辨率。 因此,可以使用这些方法,例如确定相对于共同实体(例如表面)或生物实体(例如DNA,蛋白质,细胞,组织等)固定的两个或多个实体的位置。 实体也可以相对于时间来确定,例如确定时变反应。 本发明的其他方面涉及用于副衍射极限图像分辨率的系统,用于副衍射极限图像分辨率的计算机程序和技术,用于促进副衍射极限图像分辨率的方法,用于产生可照片开关实体的方法等。

    Granular nanoparticles having bright fluorescence and giant raman enhancements
    4.
    发明授权
    Granular nanoparticles having bright fluorescence and giant raman enhancements 有权
    颗粒纳米颗粒具有明亮的荧光和巨大的拉曼增强作用

    公开(公告)号:US08815158B2

    公开(公告)日:2014-08-26

    申请号:US12743184

    申请日:2008-11-14

    CPC classification number: G01N21/6428 A61K49/0017 A61K49/0065 G01N21/658

    Abstract: The present invention provides nanoparticles having bright fluorescence, where the total number of photons emitted from a single nanoparticle upon excitation with an excitation wavelength of the nanoparticle is at least 107, and giant Raman enhancements, where Raman signal for a molecule near a single nanoparticle increases at least 107 times. The nanoparticles of the invention comprise a plurality of crystallites that are each about 0.6 nm to about 10 nm in size. The present invention also provides methods for making the nanoparticles, which include mixing a matrix material with a reactant capable of being thermally reduced to form the nanoparticle; forming a mixed solid phase; and thermally reducing the mixed solid phase to form the nanoparticle.

    Abstract translation: 本发明提供了具有明亮荧光的纳米颗粒,其中在用纳米颗粒的激发波长激发时从单个纳米颗粒发射的光子的总数至少为107,并且巨大拉曼增强,其中在单个纳米颗粒附近的分子的拉曼信号增加 至少107次。 本发明的纳米颗粒包括大小约0.6nm至约10nm的多个微晶。 本发明还提供了制备纳米颗粒的方法,其包括将基质材料与能够热还原形成纳米颗粒的反应物混合; 形成混合固相; 并且热还原混合的固相以形成纳米颗粒。

    Sub-diffraction image resolution and other imaging techniques
    5.
    发明申请
    Sub-diffraction image resolution and other imaging techniques 有权
    次衍射图像分辨率等成像技术

    公开(公告)号:US20080032414A1

    公开(公告)日:2008-02-07

    申请号:US11605842

    申请日:2006-11-29

    Abstract: The present invention generally relates to sub-diffraction image resolution and other imaging techniques. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA or a protein. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction image resolution, computer programs and techniques for sub-diffraction image resolution, methods for promoting sub-diffraction image resolution, methods for producing photoswitchable entities, and the like.

    Abstract translation: 本发明一般涉及副衍射图像分辨率和其它成像技术。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,使用次衍射分辨率。 因此,所述方法可用于例如确定相对于共同实体(例如表面)或生物实体(例如DNA或蛋白质)固定的两个或多个实体的位置。 实体也可以相对于时间来确定,例如确定时变反应。 本发明的其他方面涉及用于副衍射图像分辨率的系统,用于子衍射图像分辨率的计算机程序和技术,用于促进子衍射图像分辨率的方法,用于产生可照片开关实体的方法等。

    SUB-DIFFRACTION IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES
    6.
    发明申请
    SUB-DIFFRACTION IMAGE RESOLUTION AND OTHER IMAGING TECHNIQUES 审中-公开
    子衍射图像分辨率和其他成像技术

    公开(公告)号:US20120009589A1

    公开(公告)日:2012-01-12

    申请号:US13179936

    申请日:2011-07-11

    Abstract: The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The entities may be immobilized relative to each other and/or to a common entity. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction limit image resolution, computer programs and techniques for sub-diffraction limit image resolution, methods for promoting sub-diffraction limit image resolution, methods for producing photoswitchable entities, and the like.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率和其它成像技术。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。 实体可以相对于彼此和/或共同实体被固定。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,具有次衍射极限分辨率。 因此,可以使用这些方法,例如确定相对于共同实体(例如表面)或生物实体(例如DNA,蛋白质,细胞,组织等)固定的两个或多个实体的位置。 实体也可以相对于时间来确定,例如确定时变反应。 本发明的其他方面涉及用于副衍射极限图像分辨率的系统,用于副衍射极限图像分辨率的计算机程序和技术,用于促进副衍射极限图像分辨率的方法,用于产生可照片开关实体的方法等。

    GRANULAR NANOPARTICLES HAVING BRIGHT FLUORESCENCE AND GIANT RAMAN ENHANCEMENTS
    7.
    发明申请
    GRANULAR NANOPARTICLES HAVING BRIGHT FLUORESCENCE AND GIANT RAMAN ENHANCEMENTS 有权
    具有明亮的荧光和巨大的拉曼增强的颗粒纳米颗粒

    公开(公告)号:US20110111518A1

    公开(公告)日:2011-05-12

    申请号:US12743184

    申请日:2008-11-14

    CPC classification number: G01N21/6428 A61K49/0017 A61K49/0065 G01N21/658

    Abstract: The present invention provides nanoparticles having bright fluorescence, where the total number of photons emitted from a single nanoparticle upon excitation with an excitation wavelength of the nanoparticle is at least 107, and giant Raman enhancements, where Raman signal for a molecule near a single nanoparticle increases at least 107 times. The nanoparticles of the invention comprise a plurality of crystallites that are each about 0.6 nm to about 10 nm in size. The present invention also provides methods for making the nanoparticles, which include mixing a matrix material with a reactant capable of being thermally reduced to form the nanoparticle; forming a mixed solid phase; and thermally reducing the mixed solid phase to form the nanoparticle.

    Abstract translation: 本发明提供了具有明亮荧光的纳米颗粒,其中在用纳米颗粒的激发波长激发时从单个纳米颗粒发射的光子的总数至少为107,并且巨大的拉曼增强,其中单个纳米颗粒附近的分子的拉曼信号增加 至少107次。 本发明的纳米颗粒包括大小约0.6nm至约10nm的多个微晶。 本发明还提供了制备纳米颗粒的方法,其包括将基质材料与能够热还原形成纳米颗粒的反应物混合; 形成混合固相; 并且热还原混合的固相以形成纳米颗粒。

    SUB-DIFFRACTION LIMIT IMAGE RESOLUTION IN THREE DIMENSIONS
    8.
    发明申请
    SUB-DIFFRACTION LIMIT IMAGE RESOLUTION IN THREE DIMENSIONS 有权
    三维尺度下的分歧限制图像分辨率

    公开(公告)号:US20110002530A1

    公开(公告)日:2011-01-06

    申请号:US12746784

    申请日:2008-12-19

    Abstract: The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques, including imaging in three dimensions. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In some cases, the position of the entities can be determined in all three spatial dimensions (i.e., in the x, y, and z directions), and in certain cases, the positions in all three dimensions can be determined to an accuracy of less than about 1000 nm. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The emitted light may be used to determine the x and y positions of the first and second entities, for example, by determining the positions of the images of these entities, and in some cases, with sub-diffraction limit resolution. In some cases, the z positions may be determined using one of a variety of techniques that uses intensity information or focal information (e.g., a lack of focus) to determine the z position. Non-limiting examples of such techniques include astigmatism imaging, off-focus imaging, or multi-focal-plane imaging.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率和其它成像技术,包括三维成像。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在某些情况下,实体的位置可以在所有三个空间维度(即,x,y和z方向)中确定,在某些情况下,可以将所有三维中的位置确定为更小的精度 大约1000nm。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。 发射的光可以用于确定第一和第二实体的x和y位置,例如通过确定这些实体的图像的位置,并且在一些情况下,具有次衍射极限分辨率。 在一些情况下,可以使用使用强度信息或焦点信息(例如,缺乏焦点)的各种技术之一来确定z位置来确定z位置来确定z位置。 这种技术的非限制性实例包括像散成像,离焦成像或多焦平面成像。

    Sub-diffraction limit image resolution and other imaging techniques
    9.
    发明申请
    Sub-diffraction limit image resolution and other imaging techniques 有权
    次衍射极限图像分辨率等成像技术

    公开(公告)号:US20080182336A1

    公开(公告)日:2008-07-31

    申请号:US12012524

    申请日:2008-02-01

    Abstract: The present invention generally relates to sub-diffraction limit image resolution and other imaging techniques. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. For example, the entities may be separated by a distance of less than about 1000 nm, or less than about 300 nm for visible light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. A first entity may be activated and determined (e.g., by determining light emitted by the entity), then a second entity may be activated and determined. The entities may be immobilized relative to each other and/or to a common entity. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc. The entities may also be determined with respect to time, for example, to determine a time-varying reaction. Other aspects of the invention relate to systems for sub-diffraction limit image resolution, computer programs and techniques for sub-diffraction limit image resolution, methods for promoting sub-diffraction limit image resolution, methods for producing photoswitchable entities, and the like.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率和其它成像技术。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 例如,对于可见光,实体可以分开小于约1000nm或小于约300nm的距离。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 可以激活和确定第一实体(例如,通过确定由实体发射的光),则可以激活和确定第二实体。 实体可以相对于彼此和/或共同实体被固定。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,具有次衍射极限分辨率。 因此,可以使用这些方法,例如确定相对于共同实体(例如表面)或生物实体(例如DNA,蛋白质,细胞,组织等)固定的两个或多个实体的位置。 实体也可以相对于时间来确定,例如确定时变反应。 本发明的其他方面涉及用于副衍射极限图像分辨率的系统,用于副衍射极限图像分辨率的计算机程序和技术,用于促进副衍射极限图像分辨率的方法,用于产生可照片开关实体的方法等。

    Sub-diffraction limit image resolution and other imaging techniques
    10.
    发明授权
    Sub-diffraction limit image resolution and other imaging techniques 有权
    次衍射极限图像分辨率等成像技术

    公开(公告)号:US07838302B2

    公开(公告)日:2010-11-23

    申请号:US12012524

    申请日:2008-02-01

    Abstract: The present invention generally relates to sub-diffraction limit image resolution. In one aspect, the invention is directed to determining and/or imaging light from two or more entities separated by a distance less than the diffraction limit of the incident light. In one set of embodiments, the entities may be selectively activatable, i.e., one entity can be activated to produce light, without activating other entities. The emitted light may be used to determine the positions of the first and second entities, for example, using Gaussian fitting or other mathematical techniques, and in some cases, with sub-diffraction limit resolution. The methods may thus be used, for example, to determine the locations of two or more entities immobilized relative to a common entity, for example, a surface, or a biological entity such as DNA, a protein, a cell, a tissue, etc.

    Abstract translation: 本发明一般涉及副衍射极限图像分辨率。 在一个方面,本发明涉及确定和/或成像来自两个或多个实体的光,所述物体被隔开的距离小于入射光的衍射极限。 在一组实施例中,实体可以是可选择性地激活的,即,一个实体可以被激活以产生光,而不激活其他实体。 发射的光可以用于确定第一和第二实体的位置,例如,使用高斯拟合或其他数学技术,并且在一些情况下,具有次衍射极限分辨率。 因此,可以使用这些方法,例如确定相对于共同实体(例如表面)或生物实体(例如DNA,蛋白质,细胞,组织等)固定的两个或多个实体的位置。 。

Patent Agency Ranking