Abstract:
The present disclosure relates to methods and compositions which can modulate the globoseries glycosphingolipid synthesis. Particularly, the present disclosure is directed to glycoenzyme inhibitor compound and compositions and methods of use thereof that can modulate the synthesis of globoseries glycosphingolipid SSEA-3/SSEA-4/GloboH in the biosynthetic pathway; particularly, the glycoenzyme inhibitors target the alpha-4GalT; beta-4GalNAcT-I; or beta-3GalT-V enzymes in the globoseries synthetic pathway. Additionally, the present disclosure is also directed to vaccines, antibodies, and/or immunogenic conjugate compositions targeting the SSEA-3/SSEA-4/GLOBO H associated epitopes (natural and modified) which elicit antibodies and/or binding fragment production useful for modulating the globoseries glycosphingolipid synthesis. Moreover, the present disclosure is also directed to the method of using the compositions described herein for the treatment or detection of hyperproliferative diseases and/or conditions. Furthermore, the instant disclosure also relates to cancer stem cell biomarkers for diagnostic and therapeutic uses.
Abstract:
Methods for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates are disclosed. Alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars are incorporated into cellular glycoconjugates. Chemical probes comprising an azide group and a visual or fluorogenic probe and used to label alkyne-derivatized sugar-tagged glycoconjugates are disclosed. Chemical probes bind covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and are visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA, confocal microscopy, and mass spectrometry.
Abstract:
Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.
Abstract:
The present disclosure relates to a method for metabolic oligosaccharide engineering that incorporates derivatized alkyne-bearing sugar analogs as “tags” into cellular glycoconjugates. The disclosed method incorporates alkynyl derivatized Fuc and alkynyl derivatized ManNAc sugars into a cellular glycoconjugate. A chemical probe comprising an azide group and a visual probe or a fluorogenic probe is used to label the alkyne-derivatized sugar-tagged glycoconjugate. In one aspect, the chemical probe binds covalently to the alkynyl group by Cu(I)-catalyzed [3+2] azide-alkyne cycloaddition and is visualized at the cell surface, intracellularly, or in a cellular extract. The labeled glycoconjugate is capable of detection by flow cytometry, SDS-PAGE, Western blot, ELISA or confocal microscopy, and mass spectrometry.
Abstract:
Pharmaceutical composition comprising antibodies or antigen binding fragments thereof that bind to globo H, SSEA3, and SSEA-4 are disclosed herein, as well as methods of use thereof. Methods of use include, without limitation, cancer therapies and diagnostics. The antibodies of the disclosure can bind to certain cancer cell surfaces. Exemplary targets of the antibodies disclosed herein can include carcinomas, such as those in brain, skin, bone, lungs, breast, esophagus, stomach, liver, bile duct, pancreas, colon, kidney, cervical, ovarian, and/or prostate cancer.