Supporting glass substrate
    1.
    发明授权

    公开(公告)号:US11021389B2

    公开(公告)日:2021-06-01

    申请号:US16941631

    申请日:2020-07-29

    Applicant: AGC Inc.

    Abstract: A supporting glass substrate has a ratio of a Young's modulus (GPa) to a density (g/cm3) that is 37.0 (GPa·cm3/g) or more and the ratio has a value larger than a ratio calculation value, the ratio calculation value being a ratio of a Young's modulus (GPa) calculated from a composition to a density (g/cm3). The ratio calculation value is represented by the following expression: α=2·Σ{(Vi·Gi)/Mi·Xi}, where, in the expression, Vi is a filling parameter of a metal oxide contained in the supporting glass substrate, Gi is a dissociation energy of a metal oxide contained in the supporting glass substrate, Mi is a molecular weight of a metal oxide contained in the supporting glass substrate, and Xi is a molar ratio of a metal oxide contained in the supporting glass substrate.

    Chemically strengthened glass and production method for same

    公开(公告)号:US10730793B2

    公开(公告)日:2020-08-04

    申请号:US15651316

    申请日:2017-07-17

    Applicant: AGC Inc.

    Abstract: An object of the present invention is to provide a chemically strengthened glass having enhanced surface strength and bending strength. The present invention relates to a chemically strengthened glass having a compressive stress layer formed on a surface layer thereof by an ion exchange method, in which a straight line obtained by a linear approximation of a hydrogen concentration Y in a region of a depth X from an outermost surface of the glass satisfies a specific relational equation (I) in X=0.1 to 0.4 (μm), and an edge surface connecting main surfaces on a front side and a back side of the glass has a skewness (Rsk) measured based on JIS B0601 (2001) being −1.3 or more.

    Chemically strengthened glass
    6.
    发明授权

    公开(公告)号:US10450226B2

    公开(公告)日:2019-10-22

    申请号:US15818016

    申请日:2017-11-20

    Applicant: AGC Inc.

    Abstract: A chemically strengthened glass having a compressive stress layer formed in a surface layer thereof according to an ion exchange method, in which the glass has a surface roughness (Ra) of 0.20 nm or higher, a hydrogen concentration Y in a region to a depth X from an outermost surface of the glass satisfies the following relational equation (I) at X=from 0.1 to 0.4 (μm), a surface strength F (N) measured by a ball-on-ring test under the following conditions is (F≥1500×t2) relative to a sheet thickness t (mm) of the glass, and a surface of the glass has no polishing flaw: Y=aX+b  (I) in which meanings of respective symbols in the equation (I) are as follows: Y: hydrogen concentration (as H2O, mol/L); X: depth from the outermost surface of the glass (μm); a: −0.270 to −0.005; and b: 0.020 to 0.220.

Patent Agency Ranking