Manufacturing method for glass substrate and glass substrate

    公开(公告)号:US12068181B2

    公开(公告)日:2024-08-20

    申请号:US18479872

    申请日:2023-10-03

    Applicant: AGC Inc.

    Abstract: To suppress lowering of dimensional accuracy. A manufacturing method for a glass substrate is a manufacturing method for the glass substrate that supports a semiconductor device, the manufacturing method including: generating a glass base plate; measuring a thickness, a thickness deviation, and a warpage amount of the glass base plate; screening the glass base plate based on the thickness of the glass base plate; generating a plurality of glass blanks by cutting the screened glass base plate; setting a first polishing condition for the glass blank based on the thickness, the thickness deviation, and the warpage amount of the glass base plate; generating a glass plate by polishing a surface of the glass blank based on the first polishing condition; measuring a thickness, a thickness deviation, and a warpage amount of the glass plate; screening the glass plate based on the thickness of the glass plate; setting a second polishing condition for the glass plate based on the thickness, the thickness deviation, and the warpage amount of the glass plate; and polishing a surface of the screened glass plate based on the second polishing condition to generate a rectangular glass substrate in which a length of a side is equal to or larger than 300 mm and a thickness is equal to or larger than 0.5 mm.

    Supporting glass substrate
    4.
    发明授权

    公开(公告)号:US11021389B2

    公开(公告)日:2021-06-01

    申请号:US16941631

    申请日:2020-07-29

    Applicant: AGC Inc.

    Abstract: A supporting glass substrate has a ratio of a Young's modulus (GPa) to a density (g/cm3) that is 37.0 (GPa·cm3/g) or more and the ratio has a value larger than a ratio calculation value, the ratio calculation value being a ratio of a Young's modulus (GPa) calculated from a composition to a density (g/cm3). The ratio calculation value is represented by the following expression: α=2·Σ{(Vi·Gi)/Mi·Xi}, where, in the expression, Vi is a filling parameter of a metal oxide contained in the supporting glass substrate, Gi is a dissociation energy of a metal oxide contained in the supporting glass substrate, Mi is a molecular weight of a metal oxide contained in the supporting glass substrate, and Xi is a molar ratio of a metal oxide contained in the supporting glass substrate.

Patent Agency Ranking