Abstract:
A thrust reverser device for an aircraft includes at least two thrust reversers, and each of them includes a movable cowl movably actuated by an actuator driven by an electric motor. The electric motor is powered by a single power-conversion module including at least one autotransformer which is supplied with an alternating electric voltage and connected to at least one rectifier stage converting the alternating electric voltage into a direct voltage. The rectifier stage is connected to a current balancing stage and a current smoothing stage, supplying with the direct voltage the electric motor of the electric actuator of the movable cowl.
Abstract:
A variable-section nozzle for an aircraft nacelle includes a deformable portion of which is movable between a narrow section position and a wide section position. In particular, the variable-section nozzle includes piezoelectric actuators and a controller to control the piezoelectric actuators in order to displace the deformable portion between the narrow and wide section positions. The piezoelectric actuators can be disposed on at least one faces of the deformable portion or be disposed end-to-end to form actuating rods.
Abstract:
A control system for controlling an electrical device of a nacelle, the device having at least one element that is movable to a closed position and an open position. The control system includes at least one electromechanical member for actuating the movable element, a unit for electrically driving the electromechanical actuation member, and a controlling and monitoring unit for controlling the electrical drive unit so as to move the movable element to the closed and/or open position. The control system further includes a system for recovering braking power from the electrical drive unit during the movement of the movable element to the closed and/or open position.
Abstract:
A control system for a thrust reverser with a movable cowl includes an electromechanical actuator to actuate the movable cowl, an electric drive unit (M) driving the actuator, and a power control unit capable of controlling the electric drive unit (M). The power control unit moves the movable cowl to a closed position and/or to a deployed position. In particular, the control system includes an electronic circuit for electric braking capable of braking the electric drive unit (M), in case of overspeed of the drive unit when the movable cowl is moved to the closed position and/or to the deployed position.