Abstract:
A motor drive control device has a control circuit that generates a drive control signal for controlling a rotational speed of a motor based on a speed command signal indicating a target rotational speed of the motor, and a motor driving unit that drives the motor based on the drive control signal. The control circuit performs speed feedback control for generating the drive control signal so that the rotational speed of the motor coincides with the target rotational speed when the target rotational speed is lower than a rotational speed threshold value, and generates the drive control signal based on a relationship between current flowing through the motor and a reference current value when the target rotational speed is higher than the rotational speed threshold value.
Abstract:
A method of controlling drive of a driving motor for a rotary indexing device is provided. The device includes an indexing mechanism that indexes an angular position of a circular table by rotating the circular table with the use of the driving motor as a driving source, a clamping mechanism that holds the indexed angular position, and a control unit that controls drive of the driving motor by position control. In the method, the control unit controls the drive of the driving motor during operation of the clamping mechanism with a content of control in which an output torque of the driving motor by the position control becomes smaller than an output torque by the position control during indexing of the angular position of the circular table for an equivalent positional deviation.
Abstract:
A sewing machine speed control apparatus enabling finer control of sewing machine rotational speed by providing speed instructive pulses to a clutch coil and a braking coil of the sewing machine within a pulse application period of an oscillator used to detect the actual rotational speed of the sewing machine. The speed instructive pulses are applied in accordance with a difference between actual and desired speeds; the difference is used to look up stored values corresponding to desired periods of application of speed instructive pulses.
Abstract:
A motor drive control device has a control circuit that generates a drive control signal for controlling a rotational speed of a motor based on a speed command signal indicating a target rotational speed of the motor, and a motor driving unit that drives the motor based on the drive control signal. The control circuit performs speed feedback control for generating the drive control signal so that the rotational speed of the motor coincides with the target rotational speed when the target rotational speed is lower than a rotational speed threshold value, and generates the drive control signal based on a relationship between current flowing through the motor and a reference current value when the target rotational speed is higher than the rotational speed threshold value.
Abstract:
A short circuit detection circuit and a short circuit detection method for a multi-phase rectifier are provided, which are used for detecting conditions of a spectrum of a FWR signal outputted from the multi-phase rectifier in the frequency domain. Next, determining whether the detected signal indicating the amplitude of the frequency of the AC signal is greater than or equal to the reference signal, so as to determine whether the multi-phase rectifier has a short circuit condition. Therefore, the short circuit detection circuit and the short circuit detection method do not have any requirements for configuring a short circuit detection element on each current path of the multi-phase rectifier, so that the power loss and the cost can be reduced effectively.
Abstract:
A circuit installation that executes full voltage activation, division voltage operation, and delayed breaking brake to electric load by increasing the power to the load activated to promote its activation performance or reducing operation power in the course of operation by the load to save power consumption or limit operation performance of the load.
Abstract:
A hoist system with an overspeed detection sub-system for detecting overspeed by comparing an actual drum assembly speed with a target value. For example, the rotation of a motor may be determined by a first rotary encoder and the rotation of a drum may be determined by a second rotary encoder. The output of the first rotary encoder (the basis of a target value) is compared with the output of the second rotary encoder (corresponding to actual motion of the drum). If the difference between the target value and the actual motion is too large, then a problem, such as a broken hoist hardware component may exist, and appropriate remedial action is taken, such as braking the motor and/or the drum.
Abstract:
In an electric motor of an SBW actuator, a rotor shaft is rotated upon energization of the motor. A rotor core is rotated integrally with the rotor shaft. A resilient member enables tilting or decentering of the rotor shaft upon application of a decentering force on the rotor shaft. A stator core contacts the rotor core when the rotor shaft is tilted or decentered.
Abstract:
The present invention relates to control electronics, preferably for an electromechanical actuator, preferably for use in a primary flight control system of an aircraft, wherein the control electronics can connect or connects an electric motor, preferably of the electromechanical actuator, to an electrical or electronic load and/or wherein the control electronics can deactivate or deactivates a DC/DC converter supplying electrical power to the electric motor, and to an electromechanical actuator and to a method for damping the movement of an electromechanical actuator.