Abstract:
An exemplary pullable drawer is arranged for removably protruding in a radial direction into an outer housing of a turbine, in order to make mechanical contact with an inner carrier being concentrically arranged within the outer housing. The pullable drawer has an essentially cylindrical body, which extends along a longitudinal drawer axis. A mechanical decoupling is provided, as the pullable drawer is divided along the longitudinal drawer axis into at least separate first and second parts. The first and second parts are coupled with each other by means of a releasable mechanical joint.
Abstract:
The invention refers to a rotary flow machine having a rotor unit, rotating about a rotational axis, around which in at least one partial axial area a stationary inner housing (IH) is provided at a radial distance. The stationary inner housing (IH) can be divided up along the rotational axis in an upper and a lower inner housing half which adjoin each other along a horizontal split plane. The inner housing (IH) is surrounded in at least one axial section by an outer housing (OH) which can be divided up along the rotational axis in one upper and one lower outer housing half. Further a method for disassembling of a rotary flow machine is disclosed. The lower inner housing half provides support means which support the inner lower housing half on the lower outer housing half. The support means are detachably mounted at the lower inner housing half at least at two opposite support positions (P1, P2) relative to the rotational axis along the split plane.
Abstract:
A method for barring a rotor of a thermally loaded turbomachine includes stopping normal operation of the turbomachine; providing a barring device for rotating the rotor about a machine axis; coupling the barring device to the rotor; letting the rotor cool down during cool down of the rotor rotating the rotor by means of the barring device. A damage of the machine due to thermally induced buckling during the barring process is avoided by consecutively determining the force or torque applied to the rotor by the barring device for rotating the rotor and/or the circumferential speed of the rotor during barring. The rotation of the rotor is controlled by means of the barring device in dependence of the determined force or torque and/or circumferential speed in order to reduce a bending or imbalance of the rotor, which is due to a nonuniform temperature distribution on the rotor during cool down.
Abstract:
The disclosure pertains to a mounting system for mounting and/or removing a turbine component from a turbine. The mounting system includes a suspended rail structure for moving the turbine component with a traveller which movably connects a holder for holding the turbine component to the rail structure. It further includes a lifter with a support frame which is attachable to the lifter and configured for receiving the turbine component with the holder. The disclosure further refers to a method for mounting and removing a turbine component.
Abstract:
The invention provides a fixation device for a turbine, including a flange mounted on a housing of the turbine and a nut assembly received in the flange to apply fixation to an component inside the housing. The flange is fixed to the housing by a plurality of first bolts and comprises a central threaded hole. The nut assembly comprises a nut body with a first hole formed along the central axis of the nut body and a plurality of second holes formed around the central axis, and a plurality of second bolts received in the respective second holes. The nut body is formed with thread on its outer circumferential surface and fitted within the central threaded hole of the flange. The second bolts are screwed in the second holes to apply fixation against the component inside the housing of the turbine. The nut assembly further comprises a plurality of sleeves received in the respective second holes, and the plurality of second bolts are received in the respective sleeves. The fixation device in the present invention is able to apply for small and restricted space condition, which makes it possible to position the device very close to the split plane of the turbine. Further, the whole structure of the fixation device is simple with lightweight and easy to assemble with standard tools.
Abstract:
The invention refers to a rotary flow machine having a rotor unit, rotating about a rotational axis, around which in at least one partial axial area a stationary inner housing (IH) is provided at a radial distance. The stationary inner housing (IH) can be divided up along the rotational axis in an upper and a lower inner housing half which adjoin each other along a horizontal split plane. The inner housing (IH) is surrounded in at least one axial section by an outer housing (OH) which can be divided up along the rotational axis in one upper and one lower outer housing half. Further a method for disassembling of a rotary flow machine is disclosed. The lower inner housing half provides support means which support the inner lower housing half on the lower outer housing half. The support means are detachably mounted at the lower inner housing half at least at two opposite support positions (P1, P2) relative to the rotational axis along the split plane.
Abstract:
The invention is related to a pullable drawer for removably protruding in a radial direction into an outer housing of a turbine, in order to make mechanical contact with an inner carrier being concentrically arranged within said outer housing. The pullable drawer has an essentially cylindrical body, which extends along a longitudinal drawer axis. A mechanical decoupling is provided, as the pullable drawer is divided along said longitudinal drawer axis into at least separate first and second parts. The first and second parts are coupled with each other by means of a releasable mechanical joint.
Abstract:
The invention provides a fixation device for a turbine, including a flange mounted on a housing of the turbine and a nut assembly received in the flange to apply fixation to an component inside the housing. The flange is fixed to the housing by a plurality of first bolts and comprises a central threaded hole. The nut assembly comprises a nut body with a first hole formed along the central axis of the nut body and a plurality of second holes formed around the central axis, and a plurality of second bolts received in the respective second holes. The nut body is formed with thread on its outer circumferential surface and fitted within the central threaded hole of the flange. The second bolts are screwed in the second holes to apply fixation against the component inside the housing of the turbine. The nut assembly further comprises a plurality of sleeves received in the respective second holes, and the plurality of second bolts are received in the respective sleeves. The fixation device in the present invention is able to apply for small and restricted space condition, which makes it possible to position the device very close to the split plane of the turbine. Further, the whole structure of the fixation device is simple with lightweight and easy to assemble with standard tools.