Abstract:
This application discusses, among other things apparatus and methods for a voltage boost circuit. In an example, a voltage boost circuit can include first and second inverters, sharing a first supply node, and sharing a second supply node, a first charge transfer capacitor, configured to couple a first clock signal to the first inverter output, a second charge transfer capacitor, configured to couple a second clock signal to the second inverter output, the second clock signal being out-of-phase with the first clock signal, a first gate drive capacitor, configured to couple the first clock signal to the second inverter input, and a second gate drive capacitor, configured to couple the second clock signal to the first inverter input.
Abstract:
A switching regulator or other apparatus or techniques can include load current monitoring to provide a digital representation of an estimated load current. Load current monitoring can be performed by a circuit including a counter circuit, a comparator circuit, and a digitally-controlled source coupled to the counter circuit and configured to adjust a bias condition of a sensing device in response to a count provided by the counter circuit in order to establish a proportional relationship between a current conducted by the sensing device and a corresponding current conducted by a power switching device. The counter circuit is configured to increment and decrement the count in response to information provided by the comparator output and the count is generally indicative of the estimated load current, such as an average load current.
Abstract:
A method can reuse at least one pin in demultiplexing (demuxing) a voltage from a pin. The method can be used to set an accurate current limit threshold in a design for test (DFT) phase and, thus, to accurately set a trimming code of a current limiter. The method uses the property that a power MOSFET has almost a same conductive resistance at a large drain current. Thus, the current limit threshold can be set according to an accurate drain-to-source voltage Vds at a small current sink that is less than a maximum current that ATE is able to provide. An accurate voltage Vds can be measured through Kelvin sensing drain and source pins of the power MOSFET, which are connected to a current sense circuit.
Abstract:
A method and system to inhibit the switching of a current mode switching converter having high and low side switching elements coupled to an output inductor, the other end of which is coupled to an output node, and operated with respective modulated switching signals to regulate an output voltage Vout produced at the node. A current IC that varies with the difference between a reference voltage and a voltage proportional to Vout is compared with and a current IDETECT—PEAK which varies with the current conducted by the high side switching element; the result of the comparison of IC and IDETECT—PEAK is used to control the regulation of Vout during normal operation. Current IC is also compared with a current IDETECT—VALLEY which varies with the current conducted by the low side switching element. When IDETECT—VALLEY>IC, a ‘skip mode’ is triggered during which the switching signals are inhibited.
Abstract:
A method and system to inhibit the switching of a current mode switching converter having high and low side switching elements coupled to an output inductor, the other end of which is coupled to an output node, and operated with respective modulated switching signals to regulate an output voltage Vout produced at the node. A current IC that varies with the difference between a reference voltage and a voltage proportional to Vout is compared with and a current IDETECT—PEAK which varies with the current conducted by the high side switching element; the result of the comparison of IC and IDETECT—PEAK is used to control the regulation of Vout during normal operation. Current IC is also compared with a current IDETECT—VALLEY which varies with the current conducted by the low side switching element. When IDETECT—VALLEY>IC, a ‘skip mode’ is triggered during which the switching signals are inhibited.
Abstract:
Apparatus and methods for generating a drive signal of a switching signal are disclosed. A first circuit receives an oscillating reference signal, a first compensation signal, a second compensation signal, and a third compensation signal. The first compensation signal is indicative of an error between an output voltage of a power converter and a reference voltage. The second compensation signal is indicative of the error relative to a threshold. The third compensation signal is indicative of an output current of the power converter. The first circuit generates a comparison signal having a waveform including pulses having durations based at least partly on a combination of the periodic reference signal, the first compensation signal, the second compensation signal, and the third compensation signal. A second circuit receives a clock signal and the comparison signal and generates a drive signal for activation and deactivation of a driver transistor.
Abstract:
At least one embodiment provides a method for a nanopower boost regulator to startup from an ultra-low-voltage (such as 0.3V˜0.5V) for energy harvesting applications. The method does not necessarily require a special process or any external components such as mechanical switches. The startup circuit can include an asynchronous boost circuit to charge up an output with stacked power NMOS transistors, a ring oscillator, and/or a charge pump, along with accompanying circuitry.
Abstract:
This application discusses, among other things apparatus and methods for a voltage boost circuit. In an example, a voltage boost circuit can include first and second inverters, sharing a first supply node, and sharing a second supply node, a first charge transfer capacitor, configured to couple a first clock signal to the first inverter output, a second charge transfer capacitor, configured to couple a second clock signal to the second inverter output, the second clock signal being out-of-phase with the first clock signal, a first gate drive capacitor, configured to couple the first clock signal to the second inverter input, and a second gate drive capacitor, configured to couple the second clock signal to the first inverter input.
Abstract:
At least one embodiment provides a method for a nanopower boost regulator to startup from an ultra-low-voltage (such as 0.3V˜0.5V) for energy harvesting applications. The method does not necessarily require a special process or any external components such as mechanical switches. The startup circuit can include an asynchronous boost circuit to charge up an output with stacked power NMOS transistors, a ring oscillator, and/or a charge pump, along with accompanying circuitry.
Abstract:
A method can reuse at least one pin in demultiplexing (demuxing) a voltage from a pin. The method can be used to set an accurate current limit threshold in a design for test (DFT) phase and, thus, to accurately set a trimming code of a current limiter. The method uses the property that a power MOSFET has almost a same conductive resistance at a large drain current. Thus, the current limit threshold can be set according to an accurate drain-to-source voltage Vds at a small current sink that is less than a maximum current that ATE is able to provide. An accurate voltage Vds can be measured through Kelvin sensing drain and source pins of the power MOSFET, which are connected to a current sense circuit.