Abstract:
A polarized electromagnetic actuator includes a movable armature, a stator, and at least one coil wrapped around the stator. At least one permanent magnet is disposed over the stator. When a current is applied to the at least one coil, the at least one coil is configured to reduce a magnetic flux of at least one permanent magnet in one direction and increase a magnetic flux of at least one permanent magnet in another direction. The movable armature moves in the direction of the increased magnetic flux.
Abstract:
A force sensing input device (such as a force sensing mouse) includes at least one force sensor and at least one top portion movably connected to at least one bottom portion. When a force is applied to the top portion, the top portion exerts pressure on the force sensor. The force sensor obtains force data based upon the pressure. The amount of force applied to the top portion, within a range of force amounts, is determined from at least the force data. In this way, a broader range of inputs may be receivable from the force sensing input device as compared to input devices that merely detect whether or not a button or similar element has been pushed.
Abstract:
A touch device including a force sensor disposed between capacitive sensing structures, so both touch and force sensing occur capacitively using device drivers in rows and columns. A dual-layer cover glass, with gel adhesive separating first and second CG layers, so capacitive sensing between the first and second CG layers can determine both touch locations and applied force. The first and second CG layers include a compressible material having a Poisson's ratio of less than approximately 0.48, the force sensor being embedded therein, or disposed between the first and second CG layers. Applied force is detected using capacitive detection of depression of the first CG layer. Depression is responsive to compressible features smaller than optical wavelengths, so those features are substantially invisible to users. Alternatively, the compressible features may be large enough to be seen by a user, but made substantially invisible through the use of a fluid or other element filling spaces between the features. Such a fluid may have an index of refraction equal to, or nearly equal to, the index of refraction of the compressible features.
Abstract:
A stand alone input device can be a touch pad that provides touch inputs to an associated computing device. The input device can include a wedge-shaped base defining an inner cavity, a touch plate having a touch surface disposed over the inner cavity and configured to accept a touch input, cantilevered beams coupled to the wedge-shaped base and the touch plate and configured to deliver a force from the touch input, a haptic generator coupled to the cantilevered beams and configured to generate a haptic output in response to the touch input, an antenna component integrated within a wall of the wedge-shaped base and an antenna resonance cavity located within the inner cavity, and a switch assembly including a sliding component having a pin through a wedge-shaped base wall and a switch beam having a protrusion that engages multiple recesses located at a detent region on the sliding component.
Abstract:
A touch device including a force sensor disposed between capacitive sensing structures, so both touch and force sensing occur capacitively using device drivers in rows and columns. A dual-layer cover glass, with gel adhesive separating first and second CG layers, so capacitive sensing between the first and second CG layers can determine both touch locations and applied force. The first and second CG layers include a compressible material having a Poisson's ratio of less than approximately 0.48, the force sensor being embedded therein, or disposed between the first and second CG layers. Applied force is detected using capacitive detection of depression of the first CG layer. Depression is responsive to compressible features smaller than optical wavelengths, so those features are substantially invisible to users. Alternatively, the compressible features may be large enough to be seen by a user, but made substantially invisible through the use of a fluid or other element filling spaces between the features. Such a fluid may have an index of refraction equal to, or nearly equal to, the index of refraction of the compressible features.
Abstract:
A polarized electromagnetic actuator includes a movable armature, a stator, and at least one coil wrapped around the stator. At least one permanent magnet is disposed over the stator. When a current is applied to the at least one coil, the at least one coil is configured to reduce a magnetic flux of at least one permanent magnet in one direction and increase a magnetic flux of at least one permanent magnet in another direction. The movable armature moves in the direction of the increased magnetic flux.
Abstract:
A two-layer cover with a compressible layer separating first and second layers. In some cases, capacitive sensing between the first and second layers can determine both touch locations and applied force.
Abstract:
A force sensing input device (such as a force sensing mouse) includes at least one force sensor and at least one top portion movably connected to at least one bottom portion. When a force is applied to the top portion, the top portion exerts pressure on the force sensor. The force sensor obtains force data based upon the pressure. The amount of force applied to the top portion, within a range of force amounts, is determined from at least the force data. In this way, a broader range of inputs may be receivable from the force sensing input device as compared to input devices that merely detect whether or not a button or similar element has been pushed.
Abstract:
A force sensing input device (such as a force sensing mouse) includes at least one force sensor and at least one top portion movably connected to at least one bottom portion. When a force is applied to the top portion, the top portion exerts pressure on the force sensor. The force sensor obtains force data based upon the pressure. The amount of force applied to the top portion, within a range of force amounts, is determined from at least the force data. In this way, a broader range of inputs may be receivable from the force sensing input device as compared to input devices that merely detect whether or not a button or similar element has been pushed.