Abstract:
The present invention provides a permanent magnet-electromagnet synergistic coupling-based high-speed solenoid valve with a high dynamic response and a low rebound, including a shell and an iron core. The iron core is installed in the shell, an axial center through hole is formed in a middle of the iron core, a spring limiting sleeve is installed in the axial center through hole, an armature and a reset spring cavity are sequentially formed below the iron core, an upper portion of a valve rod is located in the spring limiting sleeve, an upper disc permanent magnet, a lower disc permanent magnet and a spring washer are arranged in the spring limiting sleeve, and a giant magnetostrictor is installed between the upper disc permanent magnet and the lower disc permanent magnet. By means of the present invention, electromagnetic force generated during pickup of the armature can be effectively improved.
Abstract:
The bistable electromechanical actuator comprises an actuator shaft (7) arranged in a house (1), said shaft being movable along its longitudinal direction, a base member (11) attached to the actuator shaft (7), said base member being slidably attached to a guiding element (3, 3′,3″) through a stud (15), said guiding element being secured to the house and having two locking notches (2a, 2b) with a predetermined distance therebetween and further having a straight or substantially straight guiding section (2c) formed between said two locking notches in a plane parallel to the longitudinal direction of said shaft (7), wherein at least one permanent magnet is fixed to the base member (11) so that the magnetic axis of each permanent magnet is perpendicular or substantially perpendicular to the longitudinal direction of said shaft (7), and wherein at least one electromagnetic coil (13) is arranged within said house (1) so that in an idle state of the actuator, one end of each coil (13) is arranged to be adjacent to one of the at least one permanent magnet (12) in such a manner that the position of said end of the respective coil (13) is slightly offset, along the longitudinal direction of said shaft (7), with respect to the position of the permanent magnet (12) adjacent thereto.
Abstract:
The DC operated polarized electromagnet includes a spool around which an excitation coil is wound and that has a central opening, a plunger having first and second armatures, fitted individually, an outer yoke enclosing opposing side faces of the spool so as to attract the first armature, an inner yoke arranged on the inner side of the outer yoke so as to attract the second armature, and permanent magnets arranged between the outer yoke and the inner yoke, and reduces magnetoresistance by setting the thickness of the outer yoke thicker than the thickness of the inner yoke so that convergent magnetic flux in the plunger is diverted into the outer yoke.
Abstract:
A polarized electromagnetic actuator includes a movable armature, a stator, and at least one coil wrapped around the stator. At least one permanent magnet is disposed over the stator. When a current is applied to the at least one coil, the at least one coil is configured to reduce a magnetic flux of at least one permanent magnet in one direction and increase a magnetic flux of at least one permanent magnet in another direction. The movable armature moves in the direction of the increased magnetic flux.
Abstract:
According to one embodiment, a linear control motor includes a first permanent magnet, a coil, a shaft, a first non-magnetic material, and a joint coupled between the shaft and a spool operable to convert rotations of the shaft into axial movements of the spool. The first non-magnetic material is disposed between at least one of the movable components and at least one of the static components and operable to prevent physical contact between at least one of the movable components and at least one of the static components.
Abstract:
A magnetic device comprising at least one stator (1) and one actuator (2), wherein the stator (1) and the actuator (2) respectively comprise at least one magnet with pole ends and a line of action of the magnet, and the actuator (2) can be moved linearly along a movement axis (3) and/or rotatably about a movement axis in a movement direction (4), wherein a stator line of action (15) of the stator (1) or a stator extension line (16) of the stator line of action (15), which stator extension line (16) extends as a geometric ray away from the pole end of the stator (1) as geometric tangent to the stator line of action (5), and an actuator line of action (25) of the translator (2) or an actuator extension line (26) of the translator line of action (25), which translator extension line (26) extends as a geometric ray away from the pole end of the translator (2) as geometric tangent to the translator line of action (25), respectively have intersection points (10), and the stator line of action (15), possibly the stator extension line (16), the translator line of action (25), and possibly the translator extension line (26) form a closed geometric shape so that the magnetic flux between the stator (1) and the translator (2) is bundled, wherein lines of action (5) and extension lines (6) extend through the magnetic device in an intersecting plane (11) comprising the movement axis (3).
Abstract:
A plunger is formed of a soft magnetic material to have one end connected a regulation pin. A permanent magnet is affixed to a stationary portion to attract the plunger in a retreated direction. A coil generates a magnetic flux in an opposite direction of the permanent magnet to reduce a magneto attraction force, which attracts the plunger. A spring biases the regulation pin in an advanced direction. The spring applies a biasing force to the regulation pin to move the regulation pin in the advanced direction when electricity is supplied to the coil to reduce the magneto attraction force of the permanent magnet. A molded portion defines a magnet accommodation hole and a cover member covers the permanent magnet housed in the magnet accommodation hole. A magnetism detection unit is disposed on an opposite side of an inner surface of the cover from the permanent magnet.
Abstract:
An actuator can include a housing, core assembly, and first and second electromagnets. The housing can have a first pole piece, second pole piece, and central pole piece disposed between the first and second pole pieces. The central pole piece can have a central body and a bridge. The bridge can be between the first and second pole pieces and axially movable relative thereto. The core assembly can be received in the housing. The core assembly can be movable along a first axis between a first core position and a second core position. The core assembly can include a permanent magnet, a first core, and a second core. The first and second cores can be coupled to the permanent magnet for common axial movement. The first and second electromagnets can be spaced axially apart by the central body and can have opposite polarities.
Abstract:
An electromagnetic rebound mechanism unit and a magnetic latch unit are fixedly installed between a switchgear and a spring drive unit by virtue of a rebound fixing member and a fixing yoke. The electromagnetic rebound mechanism unit includes a rebound coil fixedly secured to the rebound fixing member, a reinforcing plate fixedly secured to a movable shaft and a rebound ring fixedly secured to the reinforcing plate. The magnetic latch unit includes a permanent magnet fixedly secured to the rebound fixing member, a latch ring fixedly secured to the permanent magnet and a movable yoke fixedly secured to the movable shaft. The spring drive unit includes a support frame, a spring retaining plate, a circuit-opening spring, a damper unit, and first and second electromagnetic solenoids.
Abstract:
An electrical switching apparatus includes a ferromagnetic frame having first and opposite second portions, a ferromagnetic core disposed therebetween, a permanent magnet disposed on the first portion, a first tapered portion on the opposite second portion; a coil disposed about the core; and a ferromagnetic or magnetic armature including a first portion, an opposite second portion and a pivot portion pivotally disposed on the core between the portions of the armature. The armature opposite second portion has a complementary second tapered portion therein. In a first armature position, the armature first portion is magnetically attracted by the permanent magnet and the first and second tapered portions are moved apart with the coil de-energized. In a second armature position, the armature opposite second portion is magnetically attracted by the opposite second portion of the frame and the first tapered portion is moved into the second tapered portion with the coil energized.