Abstract:
Aspects of the subject disclosure may include, for example, determining a first indication of a signaling load of a first wireless access node. The first wireless access node also receives, from a second wireless access node, a second indication of a signaling load of the second wireless access node. The first and second indications of signaling loads are based on coordination of first and second network traffic of first and second groups of mobile devices in wireless communication, respectively, with the first and second wireless access nodes. One of the first or second network traffic is identified in response to one of the first indication, the second indication, or both. A redirection of the one of the first network traffic or the second network traffic is also initiated in response to one of the first indication, the second indication, or both. Other embodiments are disclosed.
Abstract:
Explicit congestion notification (ECN) bits that have traditionally been utilized in end to end congestion mitigation can be redefined to identify and compare congested and uncongested wireless accesses. Accordingly, mobile devices or other user equipment can leverage ECN data in order to make intelligent network selection, e.g., selecting a network with no congestion over one in a congested state. Accordingly, an application executing at the mobile device can send or receive data via the selected network that is selected based on ECN data.
Abstract:
A more efficient network can be achieved using software-defined networking to configure routing tables to route data traffic to and from proper cells. User equipment address data and network device internet protocol address data can be utilized to define locators specific to a user equipment device in relation to various network devices. For instance, broadcasted network address data representative of a mobile device identifier address can be received by a first network device from the mobile device, wherein the mobile device identifier address comprises network address data related to an internet protocol address of a second network device, the first network device can determine a third network device capable of a communication with the mobile device, and the communication with the mobile device can be routed by the first network device to the third network device.
Abstract:
Aspects of the subject disclosure may include, for example, a method including initiating, by a system comprising a processor, a third generation partnership project link between a mobile user equipment and a mobile management entity of a mobile packet core of a mobile communication network, initiating a non-tunneling link between stationary user equipment and a stationary packet core of the mobile communication network, and transmitting packet data from the stationary user equipment to a service through the stationary packet core via the non-tunneling link. Other embodiments are disclosed.
Abstract:
Explicit congestion notification (ECN) data that is utilized in a core portion of a cellular communication network has known issues associated with a first use scenario and an infrequent use scenario. A probe comprising probe data and a data structure for storing certain ECN data can be transmitted in order to mitigate these issues. Transmitting the probe in response to a communication session being established with a device of a network can mitigate the first use issue. Transmitting the probe in response to expiration of a probe timer in connection with a network traffic idle period can mitigate the infrequent use scenario.
Abstract:
Intelligent radio access control selecting a first cell device of a first cell layer or a second cell device of a second cell layer or selecting a radio access technology for communication by a mobile device are provided. A device receives information indicative of an access assignment for communication. The access assignment is generated based on a defined criterion, which is associated with a policy of determining a cell layer assignment prior to determining a radio access technology (RAT) assignment. In response to receiving the information, the device can update its configuration to transmit via a transmission parameter based on the information. The cell layer assignment can offload traffic from the first cell device to the second cell device while the RAT assignment can re-assign the device from a first RAT to a second RAT. Assignment can be based on network conditions or mobility state or applications of the device.
Abstract:
Explicit congestion notification (ECN) bits that have traditionally been utilized in end to end congestion mitigation can be redefined to identify and compare congested and uncongested wireless accesses. Accordingly, mobile devices or other user equipment can leverage ECN data in order to make intelligent network selection, e.g., selecting a network with no congestion over one in a congested state. Accordingly, an application executing at the mobile device can send or receive data via the selected network that is selected based on ECN data.
Abstract:
Intelligent radio access control selecting a first cell device of a first cell layer or a second cell device of a second cell layer or selecting a radio access technology for communication by a mobile device are provided. A device receives information indicative of an access assignment for communication. The access assignment is generated based on a defined criterion, which is associated with a policy of determining a cell layer assignment prior to determining a radio access technology (RAT) assignment. In response to receiving the information, the device can update its configuration to transmit via a transmission parameter based on the information. The cell layer assignment can offload traffic from the first cell device to the second cell device while the RAT assignment can re-assign the device from a first RAT to a second RAT. Assignment can be based on network conditions or mobility state or applications of the device.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a Power Over Ethernet (PoE) device (PD) having a controller to receive signals over a first cable having twisted pair wires from at least one of a network element and a gateway where the network element is associated with a service provider where the gateway is associated with a premises and where the service provider provides network communications to the premises, adjust the signals, transmit the adjusted signals over a second cable having twisted pair wires to at least one of the network element and the gateway, and receive power from at least one of the network element and the gateway, where the power is received over at least one of the first and second cables, where the power is received according to PoE protocol, and where the PD is positioned between the network element and the gateway. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a Power Over Ethernet (PoE) device (PD) having a controller to receive signals over a first cable having twisted pair wires from at least one of a network element and a gateway where the network element is associated with a service provider where the gateway is associated with a premises and where the service provider provides network communications to the premises, adjust the signals, transmit the adjusted signals over a second cable having twisted pair wires to at least one of the network element and the gateway, and receive power from at least one of the network element and the gateway, where the power is received over at least one of the first and second cables, where the power is received according to PoE protocol, and where the PD is positioned between the network element and the gateway. Other embodiments are disclosed.