Forecasting multiple poses based on a graphical image

    公开(公告)号:US10096125B1

    公开(公告)日:2018-10-09

    申请号:US15481564

    申请日:2017-04-07

    Abstract: A forecasting neural network receives data and extracts features from the data. A recurrent neural network included in the forecasting neural network provides forecasted features based on the extracted features. In an embodiment, the forecasting neural network receives an image, and features of the image are extracted. The recurrent neural network forecasts features based on the extracted features, and pose is forecasted based on the forecasted features. Additionally or alternatively, additional poses are forecasted based on additional forecasted features.

    UTILIZING INTERACTIVE DEEP LEARNING TO SELECT OBJECTS IN DIGITAL VISUAL MEDIA

    公开(公告)号:US20170140236A1

    公开(公告)日:2017-05-18

    申请号:US14945245

    申请日:2015-11-18

    CPC classification number: G06K9/3241 G06K9/4628 G06K2009/366

    Abstract: Systems and methods are disclosed for selecting target objects within digital images. In particular, in one or more embodiments, the disclosed systems and methods generate a trained neural network based on training digital images and training indicators. Moreover, one or more embodiments of the disclosed systems and methods utilize a trained neural network and iterative user indicators to select targeted objects in digital images. Specifically, the disclosed systems and methods can transform user indicators into distance maps that can be utilized in conjunction with color channels and a trained neural network to identify pixels that reflect the target object.

    SETTINGS OF A DIGITAL CAMERA FOR DEPTH MAP REFINEMENT
    3.
    发明申请
    SETTINGS OF A DIGITAL CAMERA FOR DEPTH MAP REFINEMENT 有权
    数位摄像机设置深度地图精修

    公开(公告)号:US20160182880A1

    公开(公告)日:2016-06-23

    申请号:US15056283

    申请日:2016-02-29

    Abstract: Systems and methods are disclosed for identifying depth refinement image capture instructions for capturing images that may be used to refine existing depth maps. The depth refinement image capture instructions are determined by evaluating, at each image patch in an existing image corresponding to the existing depth map, a range of possible depth values over a set of configuration settings. Each range of possible depth values corresponds to an existing depth estimate of the existing depth map. This evaluation enables selection of one or more configuration settings in a manner such that there will be additional depth information derivable from one or more additional images captured with the selected configuration settings. When a refined depth map is generated using the one or more additional images, this additional depth information is used to increase the depth precision for at least one depth estimate from the existing depth map.

    Abstract translation: 公开了用于识别用于捕获可用于改进现有深度图的图像的深度细化图像捕获指令的系统和方法。 通过在对应于现有深度图的现有图像中的每个图像补丁处,通过在一组配置设置上评估可能的深度值的范围来确定深度细化图像捕获指令。 每个可能的深度值范围对应于现有深度图的现有深度估计。 该评估允许以这样的方式选择一个或多个配置设置,使得将存在可以从由所选配置设置捕获的一个或多个附加图像导出的附加深度信息。 当使用一个或多个附加图像生成精细深度图时,该附加深度信息用于从现有深度图增加至少一个深度估计的深度精度。

    DEPTH MAP GENERATION
    4.
    发明申请
    DEPTH MAP GENERATION 有权
    深度地图生成

    公开(公告)号:US20160163053A1

    公开(公告)日:2016-06-09

    申请号:US15046021

    申请日:2016-02-17

    Abstract: Depth maps are generated from two or more of images captured with a conventional digital camera from the same viewpoint using different configuration settings, which may be arbitrarily selected for each image. The configuration settings may include aperture and focus settings and/or other configuration settings capable of introducing blur into an image. The depth of a selected image patch is evaluated over a set of discrete depth hypotheses using a depth likelihood function modeled to analyze corresponding images patches convolved with blur kernels using a flat prior in the frequency domain. In this way, the depth likelihood function may be evaluated without first reconstructing an all-in-focus image. Blur kernels used in the depth likelihood function and are identified from a mapping of depths and configuration settings to the blur kernels. This mapping is determined from calibration data for the digital camera used to capture the two or more images.

    Abstract translation: 使用不同的配置设置从相同的观点利用传统的数码相机捕获的两个或更多个图像生成深度贴图,这可以为每个图像任意选择。 配置设置可以包括能够将模糊引入到图像中的孔径和焦点设置和/或其他配置设置。 使用深度似然函数对所选图像块的深度进行评估,所述深度假设用模型来分析在频域中使用平坦先验的与模糊粒子卷积的相应图像片段。 以这种方式,可以在不首先重建全焦点图像的情况下评估深度似然函数。 在深度似然函数中使用的模糊内核,并从深度和配置设置到模糊内核的映射中识别。 该映射由用于捕获两个或更多个图像的数字照相机的校准数据确定。

    IMAGE SEGMENTATION FOR A LIVE CAMERA FEED
    10.
    发明申请
    IMAGE SEGMENTATION FOR A LIVE CAMERA FEED 有权
    图像分割用于实时摄像机进纸

    公开(公告)号:US20160037087A1

    公开(公告)日:2016-02-04

    申请号:US14449351

    申请日:2014-08-01

    Inventor: Brian Price

    Abstract: Techniques are disclosed for segmenting an image frame of a live camera feed. A biasing scheme can be used to initially localize pixels within the image that are likely to contain the object being segmented. An optimization algorithm for an energy optimization function, such as a graph cut algorithm, can be used with a non-localized neighborhood graph structure and the initial location bias for localizing pixels in the image frame representing the object. Subsequently, a matting algorithm can be used to define a pixel mask surrounding at least a portion of the object boundary. The bias and the pixel mask can be continuously updated and refined as the image frame changes with the live camera feed.

    Abstract translation: 公开了用于分割实时照相机进给的图像帧的技术。 可以使用偏置方案来初始地定位可能包含被分割对象的图像内的像素。 可以使用诸如图形切割算法的能量优化函数的优化算法与非局部邻域图结构和用于定位表示对象的图像帧中的像素的初始位置偏差。 随后,可以使用消光算法来定义围绕对象边界的至少一部分的像素掩模。 当图像帧随实时照相机进给而变化时,可以持续更新和改进偏置和像素掩码。

Patent Agency Ranking