Abstract:
Apparatus and methods for estimating a direct current offset in an upconverter are disclosed. Samples of a first signal are received. Values of a compensation signal are retrieved. For example, the compensation signal can be a component in a modified baseband signal, wherein the modified baseband signal is upconverted, downconverted, and filtered to generate the first signal. An estimate of a first DC offset induced by an upconverter is generated based at least partly on at least two selected samples of the first signal and corresponding values of the compensation signal.
Abstract:
A wireless charging network system is disclosed that includes wirelessly charged sensor nodes. The wireless network system can include a gateway node configured to aggregate data from sensor nodes within a coverage area of the gateway node. The gateway node is further configured to wirelessly transmit power to the sensor nodes using a beamformed signal, wherein the gateway node adjusts the beamformed signal to maximize wireless power transfer to sensor nodes within each sector of the coverage area. Location information can be used to adjust the beamformed signal. For example, in various embodiments, the gateway node includes a beamformer sector profile table that defines channel adaptive beam profiles for the beamformed signal for each sector of the coverage area. The gateway node can use location information to define the beam profiles.
Abstract:
A wireless charging network system is disclosed that includes wirelessly charged sensor nodes. The wireless network system can include a gateway node configured to aggregate data from sensor nodes within a coverage area of the gateway node. The gateway node is further configured to wirelessly transmit power to the sensor nodes using a beamformed signal, wherein the gateway node adjusts the beamformed signal to maximize wireless power transfer to sensor nodes within each sector of the coverage area. Location information can be used to adjust the beamformed signal. For example, in various embodiments, the gateway node includes a beamformer sector profile table that defines channel adaptive beam profiles for the beamformed signal for each sector of the coverage area. The gateway node can use location information to define the beam profiles.
Abstract:
An electrical circuit includes a local oscillator configured to generate a first reference signal and a second reference signal having a predetermined phase shift with the first reference signal, an I-channel mixer configured to inject the first reference signal to an incoming signal and generate a first output, a compensation mixer configured to multiply the first output with a constant factor to generate a second output, a first low pass filter configured to approximately attenuate frequencies in the second output to generate a third output, and a first correcting filter configured to filter the third output to generate a fourth output. The first correcting filter is configured to reduce a channel impulse response mismatch between the first low pass filter and a second low pass filter, which is configured to attenuate frequencies in a Q-channel of the incoming signal. In specific embodiments, the phase shift includes 45°.
Abstract:
A modulation scheme for long range transceiver utilizing a processing scheme in combination with a Hadamard transform is disclosed. The processing scheme can correspond to an industry standard or to other processing schemes. An input signal is parallelized through serial to parallel conversion. The processed parallel signals are orthogonalized using a Hadamard transform to allow multiple channel signals with increased throughput. Accordingly, the long range modulation scheme of this invention can achieve high efficiency and increased throughput while meeting performance goals of long range signal transmission.
Abstract:
An electrical circuit includes a local oscillator configured to generate a first reference signal and a second reference signal having a predetermined phase shift with the first reference signal, an I-channel mixer configured to inject the first reference signal to an incoming signal and generate a first output, a compensation mixer configured to multiply the first output with a constant factor to generate a second output, a first low pass filter configured to approximately attenuate frequencies in the second output to generate a third output, and a first correcting filter configured to filter the third output to generate a fourth output. The first correcting filter is configured to reduce a channel impulse response mismatch between the first low pass filter and a second low pass filter, which is configured to attenuate frequencies in a Q-channel of the incoming signal. In specific embodiments, the phase shift includes 45°.