SYSTEM AND METHOD FOR RISK OPTIMIZED, SPATIALLY SENSITIVE PREVENTIVE MAINTENANCE SCHEDULING FOR ASSET MANAGEMENT
    2.
    发明申请
    SYSTEM AND METHOD FOR RISK OPTIMIZED, SPATIALLY SENSITIVE PREVENTIVE MAINTENANCE SCHEDULING FOR ASSET MANAGEMENT 审中-公开
    风险优化的系统和方法,用于资产管理的空间敏感的预防性维护调度

    公开(公告)号:US20120130759A1

    公开(公告)日:2012-05-24

    申请号:US12954051

    申请日:2010-11-24

    IPC分类号: G06Q10/00 G06F17/30

    摘要: A preventative maintenance method and a system for estimating the risk of failure of an asset based on intrinsic parameters such as failure history combined with causative factors like weather and independent external risk factors such as vandalism and risk of flooding. The present invention may further have a system for estimating the risk of failure of an asset based on intrinsic parameters, such as failure history combined with causative factors such as weather and independent external risk factors like vandalism and risk of flooding having a location based asset/service failure risk estimator, an external risk estimates database for feeding and an integrated failure risk database, the external risk estimates database feeding the integrated failure risk database.

    摘要翻译: 一种预防性维护方法和一种基于内部参数(如失败历史)与诸如天气和独立外部风险因素(如破坏行为和洪水风险)等因果因素相结合的资产估计风险的系统。 本发明还可以具有用于基于内在参数来估计资产失效风险的系统,诸如故障历史与诸如天气和独立的外部风险因素之类的因果关系,诸如破坏行为和具有基于位置的资产/ 服务失败风险估算器,用于喂养的外部风险估计数据库和综合失败风险数据库,外部风险估算数据库为整合的故障风险数据库提供服务。

    Systems and methods for analyzing spatiotemporally ambiguous events
    6.
    发明授权
    Systems and methods for analyzing spatiotemporally ambiguous events 失效
    用于分析时空歧义事件的系统和方法

    公开(公告)号:US08670782B2

    公开(公告)日:2014-03-11

    申请号:US13158348

    申请日:2011-06-10

    IPC分类号: H04W24/00 G06K9/00 G01R31/28

    CPC分类号: H04W24/08 H04W24/04

    摘要: Principles of the invention provide techniques for analyzing spatiotemporally ambiguous events. In one aspect, an exemplary method includes the steps of storing event data representative of an event, the event data comprising spatiotemporally ambiguous measurements; storing side information, the side information comprising at least one of spatial data and temporal data related to the event in space-time: associating the event data with the side information by soft association to form association data; applying one or more estimation techniques to the association data to form estimation data; and determining at least one of a rate, a factor, a likelihood, a value, a time, a location, and a cause for the event by applying one or more characterization techniques to the estimation data.

    摘要翻译: 本发明的原理提供了用于分析时空歧义事件的技术。 在一个方面,示例性方法包括存储表示事件的事件数据的步骤,所述事件数据包括时空上不明确的测量; 存储侧信息,所述侧信息包括空间数据和与所述事件相关的时间数据中的至少一个在时空中:通过软关联将所述事件数据与所述侧信息相关联以形成关联数据; 对所述关联数据应用一个或多个估计技术以形成估计数据; 以及通过对所述估计数据应用一个或多个表征技术来确定所述事件的速率,因素,似然性,值,时间,位置和原因中的至少一个。

    SYSTEMS AND METHODS FOR ANALYZING SPATIOTEMPORALLY AMBIGUOUS EVENTS
    7.
    发明申请
    SYSTEMS AND METHODS FOR ANALYZING SPATIOTEMPORALLY AMBIGUOUS EVENTS 失效
    用于分析空间偶然事件的系统和方法

    公开(公告)号:US20120315920A1

    公开(公告)日:2012-12-13

    申请号:US13158348

    申请日:2011-06-10

    IPC分类号: H04W24/00

    CPC分类号: H04W24/08 H04W24/04

    摘要: Principles of the invention provide techniques for analyzing spatiotemporally ambiguous events. In one aspect, an exemplary method includes the steps of storing event data representative of an event, the event data comprising spatiotemporally ambiguous measurements; storing side information, the side information comprising at least one of spatial data and temporal data related to the event in space-time: associating the event data with the side information by soft association to form association data; applying one or more estimation techniques to the association data to form estimation data; and determining at least one of a rate, a factor, a likelihood, a value, a time, a location, and a cause for the event by applying one or more characterization techniques to the estimation data.

    摘要翻译: 本发明的原理提供了用于分析时空歧义事件的技术。 在一个方面,示例性方法包括存储表示事件的事件数据的步骤,所述事件数据包括时空上不明确的测量; 存储侧信息,所述侧信息包括空间数据和与所述事件相关的时间数据中的至少一个在时空中:通过软关联将事件数据与侧信息相关联以形成关联数据; 对所述关联数据应用一个或多个估计技术以形成估计数据; 以及通过对所述估计数据应用一个或多个表征技术来确定所述事件的速率,因素,似然性,值,时间,位置和原因中的至少一个。

    Method and Apparatus for Semantic Assisted Rating of Multimedia Content
    8.
    发明申请
    Method and Apparatus for Semantic Assisted Rating of Multimedia Content 有权
    多媒体内容语义辅助评估方法与装置

    公开(公告)号:US20090234831A1

    公开(公告)日:2009-09-17

    申请号:US12046206

    申请日:2008-03-11

    IPC分类号: G06F7/06 G06F17/30

    摘要: The present invention is directed to a method and apparatus for assisting in rating and filtering multimedia content, such as images, videos and sound recordings. One embodiment comprises a computer implemented method for rating the objectionability of specified digital content that comprises one or more discrete content items, wherein the method includes the step of moving the specified content to one or more filtering stages in a succession of filtering stages. After the specified content is moved to a given one of the filtering stages, a rating procedure is carried out to determine whether a rating can be applied to one or more of the content items, and if so, a selected rating is applied to each of the one or more content items. The method further comprises moving content items of the specified content to the next stage in the succession after the given stage, when at least one content item of the specified content remains without rating, after the rating procedure at the given stage. When none of the content items of the specified content remains without a rating after the rating procedure has been completed at the given stage, ratings that have been respectively applied to at least some of the content items are selectively processed, in order to determine an overall objectionability rating for the specified content.

    摘要翻译: 本发明涉及一种用于协助评估和过滤诸如图像,视频和录音的多媒体内容的方法和装置。 一个实施例包括用于评估包括一个或多个离散内容项目的指定数字内容的不良性的计算机实现的方法,其中该方法包括将指定内容移动到一系列过滤阶段中的一个或多个过滤阶段的步骤。 在将指定内容移动到给定的一个过滤阶段之后,执行评级过程以确定评级是否可应用于一个或多个内容项,如果是,则将所选评级应用于 一个或多个内容项。 该方法还包括在给定阶段之后的指定内容的至少一个内容项目在给定阶段的评级过程之后保持没有评级的情况下,将指定内容的内容项移动到下一阶段。 当在给定阶段在评级程序完成之后,指定内容的内容项目中没有任何内容项目没有得到评级时,已经分别应用于至少一些内容项目的评级被选择性地处理,以便确定总体 指定内容的异议评级。

    Unsupervised learning of video structures in videos using hierarchical statistical models to detect events
    9.
    发明授权
    Unsupervised learning of video structures in videos using hierarchical statistical models to detect events 失效
    使用分层统计模型检测事件的视频中视频结构的无监督学习

    公开(公告)号:US07313269B2

    公开(公告)日:2007-12-25

    申请号:US10734451

    申请日:2003-12-12

    IPC分类号: G06K9/62

    摘要: A method learns a structure of a video, in an unsupervised setting, to detect events in the video consistent with the structure. Sets of features are selected from the video. Based on the selected features, a hierarchical statistical model is updated, and an information gain of the hierarchical statistical model is evaluated. Redundant features are then filtered, and the hierarchical statistical model is updated, based on the filtered features. A Bayesian information criteria is applied to each model and feature set pair, which can then be rank ordered according to the criteria to detect the events in the video.

    摘要翻译: 一种方法在无监督的设置中学习视频的结构,以检测符合结构的视频中的事件。 从视频中选择功能集。 基于所选择的特征,更新层次统计模型,并评估分层统计模型的信息增益。 然后过滤冗余特征,并基于过滤的特征更新分层统计模型。 贝叶斯信息标准适用于每个模型和特征集对,然后可以根据标准对秩进行排序以检测视频中的事件。

    Unsupervised learning of video structures in videos using hierarchical statistical models to detect events
    10.
    发明申请
    Unsupervised learning of video structures in videos using hierarchical statistical models to detect events 失效
    使用分层统计模型检测事件的视频中视频结构的无监督学习

    公开(公告)号:US20050131869A1

    公开(公告)日:2005-06-16

    申请号:US10734451

    申请日:2003-12-12

    IPC分类号: G06T7/00 G06F17/30 G06K9/00

    摘要: A method learns a structure of a video, in an unsupervised setting, to detect events in the video consistent with the structure. Sets of features are selected from the video. Based on the selected features, a hierarchical statistical model is updated, and an information gain of the hierarchical statistical model is evaluated. Redundant features are then filtered, and the hierarchical statistical model is updated, based on the filtered features. A Bayesian information criteria is applied to each model and feature set pair, which can then be rank ordered according to the criteria to detect the events in the video.

    摘要翻译: 一种方法在无监督的设置中学习视频的结构,以检测符合该结构的视频中的事件。 从视频中选择功能集。 基于所选择的特征,更新层次统计模型,并评估分层统计模型的信息增益。 然后过滤冗余特征,并基于过滤的特征更新分层统计模型。 贝叶斯信息标准适用于每个模型和特征集对,然后可以根据标准对秩进行排序以检测视频中的事件。