Hybrid communications based upon aerial networks

    公开(公告)号:US11277203B1

    公开(公告)日:2022-03-15

    申请号:US16749779

    申请日:2020-01-22

    Abstract: Disclosed herein are embodiments of an aerial network system including a first transceiver configured to transmit and receive free space optical (FSO) signals and a second transceiver configured to transmit and receive radio frequency (RF) signals. A processor provides modulated data signals to the first and second transceivers for transmission and receives demodulated signals from the first and second transceiver. The processor is configured for policy-based multipath admission of requests for access to an IP-routing enabled overlay network. The processor includes an inverse mission planning system configured for predictive traffic load balancing of transmitted FSO signals and RF signals. The inverse mission planning system includes radio behavior models and aerial platform models, and is configured for geographic simulation and optimization of mission planning data based upon user-inputted mission-specific data. Forward error correction (FEC) coding of transmitted communications via packet erasure coding provides resiliency with a low bit error rate.

    Aerial networks with hybrid communication links

    公开(公告)号:US12278664B1

    公开(公告)日:2025-04-15

    申请号:US17986689

    申请日:2022-11-14

    Abstract: Disclosed herein are embodiments of an aerial network system including a first transceiver configured to transmit and receive free space optical (FSO) signals and a second transceiver configured to transmit and receive radio frequency (RF) signals. A processor provides modulated data signals to the first and second transceivers for transmission and receives demodulated signals from the first and second transceiver. The processor is configured for policy-based multipath admission of requests for access to an IP-routing enabled overlay network. The processor includes an inverse mission planning system configured for predictive traffic load balancing of transmitted FSO signals and RF signals. The inverse mission planning system includes radio behavior models and aerial platform models, and is configured for geographic simulation and optimization of mission planning data based upon user-inputted mission-specific data. Forward error correction (FEC) coding of transmitted communications via packet erasure coding provides resiliency with a low bit error rate.

    Optimizing joint aerial-layer networks using steerable antennas

    公开(公告)号:US11196157B1

    公开(公告)日:2021-12-07

    申请号:US16887175

    申请日:2020-05-29

    Abstract: A communication optimization system/method for mobile networks uses a server that generates waypoints based on a first communication network within a route to be travelled by an aerial vehicle, the aerial vehicle comprising a communication hub configured to communicate with at least one communication node, a communication hub controller configured control movement of a steerable antenna, and an aerial vehicle controller configured control movement of the aerial vehicle. The server then transmits the waypoints to the aerial vehicle controller; periodically monitors networks not connected to the communication hub; when a second communication network not connected to the communication hub satisfies a threshold, transmits causes the communication controller to steer the steerable antenna in a direction of the second communication network, further causing the communication hub to communicate and connect with the second communication network.

    Communications system for controlling steerable antennas

    公开(公告)号:US11710897B1

    公开(公告)日:2023-07-25

    申请号:US17543275

    申请日:2021-12-06

    Abstract: A communication optimization system/method for mobile networks uses a server that generates waypoints based on a first communication network within a route to be travelled by an aerial vehicle, the aerial vehicle comprising a communication hub configured to communicate with at least one communication node, a communication hub controller configured control movement of a steerable antenna, and an aerial vehicle controller configured control movement of the aerial vehicle. The server then transmits the waypoints to the aerial vehicle controller; periodically monitors networks not connected to the communication hub; when a second communication network not connected to the communication hub satisfies a threshold, transmits causes the communication controller to steer the steerable antenna in a direction of the second communication network, further causing the communication hub to communicate and connect with the second communication network.

    Hybrid communications based upon aerial networks

    公开(公告)号:US11563488B1

    公开(公告)日:2023-01-24

    申请号:US17587859

    申请日:2022-01-28

    Abstract: Disclosed herein are embodiments of an aerial network system including a first transceiver configured to transmit and receive free space optical (FSO) signals and a second transceiver configured to transmit and receive radio frequency (RF) signals. A processor provides modulated data signals to the first and second transceivers for transmission and receives demodulated signals from the first and second transceiver. The processor is configured for policy-based multipath admission of requests for access to an IP-routing enabled overlay network. The processor includes an inverse mission planning system configured for predictive traffic load balancing of transmitted FSO signals and RF signals. The inverse mission planning system includes radio behavior models and aerial platform models, and is configured for geographic simulation and optimization of mission planning data based upon user-inputted mission-specific data. Forward error correction (FEC) coding of transmitted communications via packet erasure coding provides resiliency with a low bit error rate.

Patent Agency Ranking