Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, and the metal hydroxide is aluminum hydroxide, aluminum oxide hydroxide, or a mixture of said hydroxides, and also to an associated production process and use.
Abstract:
The present invention relates to a flame-retardant mixture comprising (A) at least one polyurethane as component A, (B) at least one flame retardant selected from the group consisting of tallow, ammonium phosphate, ammonium polyphosphate, calcium carbonate, antimony oxide, zinc borate, clay, montmorillonite clay, metal oxides, metal hydroxides, organic phosphinate compounds, organic phosphate compounds, polyhydric alcohols, melamine compounds, chlorinated polyethylene, and mixtures thereof, as component B, and (C) at least one crosslinking reagent as component C, where the at least one crosslinking reagent is at least one isocyanate dissolved in at least one polyurethane, and also to a process for the production of a flame-retardant polyurethane, to the resultant flame-retardant polyurethane, and also to the use of a solution of at least one isocyanate in at least one polyurethane in the production of a flame-retardant polyurethane for increasing the mechanical stability of flame-retardant polyurethanes.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, the material comprises, as further flame retardant, at least one phosphorus-containing flame retardant which is a derivative of phosphoric acid, phosphonic acid, and/or phosphinic acid and the material further comprises hydrotalcite and/or phyllosilicate, and also to an associated production process and the use.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, and the metal hydroxide is aluminum hydroxide, aluminum oxide hydroxide, or a mixture of said hydroxides, and also to an associated production process and use.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, the material comprises, as further flame retardant, at least one phosphorus-containing flame retardant which is a derivative of phosphoric acid, phosphonic acid, and/or phosphinic acid and the material further comprises hydrotalcite and/or phyllosilicate, and also to an associated production process and the use.