Abstract:
A method and system are provided in which a device that is operable to handle WiFi communication and WiMAX communication may receive downlink medium access protocol (MAP) information in a downlink sub-frame of a WiMAX frame and disable WiFi transmission during a portion of the downlink sub-frame based on the downlink MAP information. The disabled WiFi transmission may be enabled after data within the downlink sub-frame is decoded. The device may also receive uplink MAP information in the downlink sub-frame and may control a clear channel assessment associated with the WiFi transmission based on the uplink MAP information. The MAP information may comprise data or burst profile information and/or one or more physical control messages. A similar time domain approach may be utilized for coexistence between Win and long term evolution (LTE) coexistence, Bluetooth and WiMAX, and Bluetooth and LTE. Frame aggregation may be enabled to alleviate pending WiFi traffic.
Abstract:
A method and system are provided in which a device that is operable to handle WiFi communication and WiMAX communication may receive downlink medium access protocol (MAP) information in a downlink sub-frame of a WiMAX frame and disable WiFi transmission during a portion of the downlink sub-frame based on the downlink MAP information. The disabled WiFi transmission may be enabled after data within the downlink sub-frame is decoded. The device may also receive uplink MAP information in the downlink sub-frame and may control a clear channel assessment associated with the WiFi transmission based on the uplink MAP information. The MAP information may comprise data or burst profile information and/or one or more physical control messages. A similar time domain approach may be utilized for coexistence between WiFi and long term evolution (LTE) coexistence, Bluetooth and WiMAX, and Bluetooth and LTE. Frame aggregation may be enabled to alleviate pending WiFi traffic.
Abstract:
A device with concurrent long-term evolution (LTE) and WLAN uplink transmission includes a WLAN transceiver coupled to an LTE transceiver via an interface. The LTE transceiver includes an LTE Layer-1 module that determines whether an LTE data downlink activity is scheduled for an LTE downlink sub-frame of an LTE time frame, based on information in a first portion of the LTE downlink sub-frame. When determination is made that the LTE data downlink activity is not scheduled for the LTE downlink sub-frame, a message may be communicated through the interface to notify the WLAN transceiver that the second portion of the LTE downlink sub-frame is available for WLAN communication. The LTE time frame includes multiple LTE downlink sub-frames each including the first portion and a second portion. The first portion provides the information that indicates whether the LTE data downlink activity is scheduled for the second portion of that LTE sub-frame.
Abstract:
A device with concurrent long-term evolution (LTE) and WLAN uplink transmission includes a WLAN transceiver coupled to an LTE transceiver via an interface. The LTE transceiver includes an LTE Layer-1 module that determines whether an LTE data downlink activity is scheduled for an LTE downlink sub-frame of an LTE time frame, based on information in a first portion of the LTE downlink sub-frame. When determination is made that the LTE data downlink activity is not scheduled for the LTE downlink sub-frame, a message may be communicated through the interface to notify the WLAN transceiver that the second portion of the LTE downlink sub-frame is available for WLAN communication. The LTE time frame includes multiple LTE downlink sub-frames each including the first portion and a second portion. The first portion provides the information that indicates whether the LTE data downlink activity is scheduled for the second portion of that LTE sub-frame.