Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
A communication device is configured to communicate coded information to other communication device(s). The communication device uses NCPs to indicate locations of codewords within signal(s) transmitted to the other communication device(s). The communication device is configured to encode NCP(s) using an FEC code to generate coded NCP(s) and also to encode the NCP(s) using a cyclic redundancy check (CRC) code to generate NCP CRC bits. The communication device is also configured to encode the NCP CRC bits using the FEC code to generate coded NCP CRC bits. The communication device is then configured to generate OFDM or OFDMA symbol(s) include the coded NCP(s) and the coded NCP CRC bits to indicate beginnings of codeword(s) within at least one of the OFDM symbol(s) and/or additional OFDM symbol(s). The communication device is also configured to transmit the OFDM or OFDMA symbols to another communication device via a communication interface of the communication device.
Abstract:
A communication device is configured to communicate coded information to other communication device(s). The communication device uses NCPs to indicate locations of codewords within signal(s) transmitted to the other communication device(s). The communication device is configured to encode NCP(s) using an FEC code to generate coded NCP(s) and also to encode the NCP(s) using a cyclic redundancy check (CRC) code to generate NCP CRC bits. The communication device is also configured to encode the NCP CRC bits using the FEC code to generate coded NCP CRC bits. The communication device is then configured to generate OFDM or OFDMA symbol(s) include the coded NCP(s) and the coded NCP CRC bits to indicate beginnings of codeword(s) within at least one of the OFDM symbol(s) and/or additional OFDM symbol(s). The communication device is also configured to transmit the OFDM or OFDMA symbols to another communication device via a communication interface of the communication device.
Abstract:
A communication device (or device) includes a communication interface and processor that support communications with one or more other devices within a communication system. The processor generates and interprets different signals, frames, packets, symbols, etc. for transmission to other devices and that have been received from other devices. The device generates modulation symbols based on two-dimensional (2-D) symbol locations of a constellation. The device generates the 2-D symbol locations using based on recursive one-dimensional (1-D) Gray code formula applied to bits of symbol values. The recursive 1-D Gray code formula specifies first symbol locations for symbol values having a first number of bits (e.g., n) based on second symbol locations for other symbol values having one fewer bits per symbol (e.g., n−1). The device maps data symbols to the 2-D symbol locations to generate the modulation symbols and transmits the modulation symbols to another communication device.
Abstract:
A communication device operates to support communications with one or more other communication devices. The communication device includes a processor and a communication interface to perform various operations including receiving forward error correction (FEC) coded signals from another communication device. The communication device iteratively decodes the FEC coded signals to make estimates of information encoded therein. The communication device then determines an operational error check rate based on error check failure of at least one of the FEC coded signals after performing a predetermined number of decoding iterations (e.g., that is less than a maximum number of decoding iterations performed by the device). The device then determines a signal to noise ratio (SNR) margin of the communication device by applying the operational error check rate to a characterization of the communication device that relates error check rate and SNR.