Abstract:
A cryostat configuration comprising an outer shell and a cryocontainer (2) for cryogenic fluid installed therein, wherein the cryocontainer (2) is connected to the outer shell via at least two suspension tubes (16), and with a neck tube (1) whose upper warm end is connected to the outer shell and whose lower cold end is connected to the cryocontainer (2) and into which a cold head (3) of a multi-stage cryocooler is installed, wherein the outer shell, the cryocontainer (2), the suspension tubes (16) and the neck tube (1) delimit an evacuated space, and wherein the cryocontainer (2) is moreover surrounded by at least one radiation shield which is connected to the suspension tubes (16) and optionally to the neck tube (1) of the cryocontainer (2) in a thermally conducting fashion, is characterized by a seal which can be manually and/or automatically actuated to separate the cold end of the neck tube (1) from the cryocontainer (2) in such a manner that fluid flow between the cryocontainer (2) and the neck tube (1) is minimized or completely interrupted. A cryostat configuration of this type ensures safe installation and removal of a cold head (3) into and from a neck tube (1) of a helium container (2).
Abstract:
A cryostat configuration for keeping cryogenic fluids in at least one cryocontainer, comprising an outer shell and a neck tube containing a cold head of a cryocooler, wherein the coldest cold stage of the cold head is disposed in a contact-free manner relative to the neck tube and the cryocontainer, and wherein a cryogenic fluid is located in the neck tube, is characterized in that the neck tube is disposed between the outer shell and a cryocontainer and/or the radiation shield, the neck tube is closed in a gas-tight manner at the end facing the cryocontainer and/or the radiation shield, the neck tube is coupled to the cryocontainer and/or a radiation shield disposed between the cryocontainers or a cryocontainer and the outer shell, via a connection having a good thermal conductivity, the neck tube comprising a fill-in device at an end located at ambient temperature. This permits efficient heat transfer between the cryocooler and the cryocontainer with little vibration, while simultaneously ensuring great safety during maintenance work without discharging the magnet.
Abstract:
In a method and a device for precooling the helium tank of a cryostat, in particular one for accommodating a superconductive magnet coil, contamination of the helium tank is avoided by the fact that helium gas is cooled down to the temperature of boiling nitrogen in a closed circuit, the helium gas is then circulated through the helium tank and thereafter cooled down again to the temperature of boiling nitrogen. The helium tank is cooled by means of the helium gas, which has a temperature of 77 K, until the tank has reached that temperature. The interior of the helium tank getting into contact exclusively with helium, the helium tank can be filled with liquid helium immediately after it has reached the precooling temperature, without the need to clean the tank first.
Abstract:
A cryostat, in particular for superconductive magnets, comprising different components nested in each other, one of them forming an outer shell and at least another one forming a tank arranged in the latter for receiving a coolant, and comprising further tension bars for interconnecting each inner component with its respective adjacent outer component, the said tension bars containing reinforcing fibers and being equipped at their ends with tie rods by means of which they are fixed to the respective component. A bond of high strength is achieved between the tension bars and tie rods due to the fact that the tie rods are provided with an outwardly widening bore, that each end of each tension bar is arranged in the bore in such a manner that the ends of the reinforcing fibers, being spread apart and impregnated with a glue, are located at the wider end of the bore. The widening tension bars, which are passed through the tie rods, have the effect that the connection is subjected, preferably, to pressure and shearing forces, whereby the tensile strength is prevented from dropping suddenly if the breaking tension should be exceeded.
Abstract:
The invention relates to a cryostat, in particular a helium cryostat with an additional nitrogen tank and a vacuum section, comprising a pressure-relief cover arranged at the outside of the tank wall of the cryostat for closing an opening therein. A locking device by which the said pressure-relief cover is retained in position on the tank wall of the cryostat and which, in its closed position, urges the pressure-relief cover against the edge of the tank opening, under the action of a spring, in such a way that the pressure-relief cover is permitted to be lifted off slightly in the presence of a slight overpressure, against the action of a spring, while in the presence of an important overpressure the locking device assumes its open position in which the pressure-relief cover is released from the tank opening, urges the pressure-relief cover automatically against the tank wall so as to close the opening of the tank edge again after a slight overpressure has been released, but releases the opening when an important overpressure prevails in the cryostat. This arrangement prevents damages to the cryostat and avoids the risks connected therewith.
Abstract:
A cryostat configuration comprising an outer shell and a cryocontainer (2) for cryogenic fluid installed therein, wherein the cryocontainer (2) is connected to the outer shell via at least two suspension tubes (16), and with a neck tube (1) whose upper warm end is connected to the outer shell and whose lower cold end is connected to the cryocontainer (2) and into which a cold head (3) of a multi-stage cryocooler is installed, wherein the outer shell, the cryocontainer (2), the suspension tubes (16) and the neck tube (1) delimit an evacuated space, and wherein the cryocontainer (2) is moreover surrounded by at least one radiation shield which is connected to the suspension tubes (16) and optionally to the neck tube (1) of the cryocontainer (2) in a thermally conducting fashion, is characterized by a seal which can be manually and/or automatically actuated to separate the cold end of the neck tube (1) from the cryocontainer (2) in such a manner that fluid flow between the cryocontainer (2) and the neck tube (1) is minimized or completely interrupted. A cryostat configuration of this type ensures safe installation and removal of a cold head (3) into and from a neck tube (1) of a helium container (2).
Abstract:
A NMR measurement apparatus comprising a cryostat (10) in which a superconducting magnet coil system (9) is disposed in a first tank (8) having cryogenic liquid and surrounded by additional cooling devices such as radiation shields (5, 6), superinsulating foil (7) and, if appropriate, a second tank (3) having cryogenic liquid, is characterized by a pulse tube cooler (11) cryotechnically connected to at least one of the additional cooling devices in a good heat conducting fashion with this cooling device being mechanically attached in the cryostat (10) in such a fashion that vibrational and cryotechnical decoupling is achieved between the cooling device and the first tank (8) having the cryogenic liquid and, in particular, between the cooling device and the superconducting magnet coil system (9). The cooling losses of the cryostat are minimized in the NMR measurement apparatus in accordance with the invention so that a nearly uninterrupted operation of the apparatus is facilitated with, however, no field distortions being produced by the cryogenic measures, which would be extremely undesirable, in particular, with a high resolution NMR spectrometer and which would have to be compensated for through extremely difficult technical measures.
Abstract:
A cryomagnet system, in particular for use with nuclear magnetic resonance (NMR) experiments or ion cyclotron resonance (ICR) experiments, with a low-loss helium cryostat (1) comprising a helium container (2) and one or a plurality of tubes for the feed or exit of helium into or out of the helium container (2), respectively, the tubes being sealed to the atmosphere outside the helium container (2) by at least one non-return low-pressure valve (4), wherein at least one exhaust pipeline (3) is provided with a device for dissipating the energy of the expanding helium. Such a device may consist of a chamber which is deviated from the exhaust pipeline (3) and has a wall material of very high extensibility, e.g. a folding balloon. Yet the device may also consist of a flow baffle which is provided in the exhaust pipeline (3), for example a porous disc (6). The device withdraws kinetic energy from thermo-acoustic oscillations of the helium gas column in the conduit system of the cryostat and thus dampens the detrimental oscillations which entrain increased losses of helium and disturbance of the magnetic field at the locus of the sample (FIG. 3a).
Abstract:
A cryostat configuration has at least three centering elements (4) which are distributed about the periphery of a cryocontainer (1). Each end (6) of the centering elements (4) facing away from an outer jacket (3) of the cryostat configuration is connected to an actuator (7) which exerts a pressure or tensile force on the respective centering element (4) to generate a mechanical tension in a corresponding centering element (4) which loads the centering elements (4) with a nearly constant pressure or tension, irrespective of the temperature changes within the cryostat configuration. This yields a cryostat configuration which permits pressure centering without overloading the centering elements.
Abstract:
A cryostat configuration for keeping liquid helium comprises an outer jacket (1) surrounding a helium container (2) connected at at least two suspension tubes (3) to the outer jacket (1), and with a neck tube (4) whose upper warm end (5) is connected to the outer jacket (1) and whose lower cold end (6) is connected to the helium container (2) and into which a multi-stage cold head of a cryocooler (7) is installed, wherein the outer jacket (1), the helium container (2), the suspension tubes (3) and the neck tube (4) delimit an evacuated space, and the helium container (2) is surrounded by at least one radiation shield (8) which is connected in a heat-conducting fashion to the suspension tubes (3) and also to a contact surface (9) on the neck tube (4) of the helium container (2). The cryostat configuration is characterized by a gas gap (13) between one or more cold stages of the cold head (7) and one or more contact surfaces (9) in the neck tube (4) which are each connected in a heat-conducting manner to a radiation shield (8) via a fixed, rigid or flexible thermal bridge (12), heat being transferred through the gas gap (13) from the respective radiation shield (8) to the corresponding cold stage of the cold head (7). A cryostat configuration of this type ensures that no vibrations of the cold head (7) stages pass detectably into the cryostat configuration, wherein the quality of the thermal connection between the cold head (7) and the radiation shield(s) (8) is nevertheless sufficient.