Abstract:
A device has a first electrically conductive component, a second electrically conductive component, and an electrically conductive nanocoating (ECN) electrically connecting the first electrically conductive component to the second electrically conductive component. An aircraft has an engine, a fuselage, and a device having a first electrically conductive component, a second electrically conductive component, and an electrically conductive nanocoating (ECN) electrically connecting the first electrically conductive component to the second electrically conductive component. A method of providing an electrical conduction path includes providing a first electrically conductive component, providing a second electrically conductive component, and decreasing an electrical resistance between the first electrically conductive component and the second electrically conductive component using an electrically conductive nanocoating (ECN).
Abstract:
An aircraft component has an exterior surface and a protective nanocoating carried by the exterior surface. An aircraft has an engine, a fuselage, and a component having an exterior surface and a protective nano coating carried by the exterior surface. A method of protecting an aircraft component includes selecting at least one harmful environmental component and applying a protective nanocoating to the aircraft component, wherein the protective nanocoating is configured to protect the aircraft component from the selected harmful environmental component.
Abstract:
An apparatus comprising a drivelink comprising a housing including a socket, wherein the socket comprises a cross-sectional area, and a bearing cartridge disposed within the socket, wherein a cross-sectional area of the cartridge is less than the cross-sectional area of the socket. An apparatus comprising a drivelink comprising a housing having a socket, and a bearing cartridge positioned within the socket and comprising a first portion and a second portion, wherein the first portion is configured to undergo compression when a load is applied to the drivelink, and wherein the second portion is configured to not be in tension when the load is applied to the drivelink.
Abstract:
A damper for a rotor hub for a rotorcraft can include a housing, a piston resiliently coupled to the housing with a first elastomeric member and a second elastomeric member, a plurality of conical members, a fluid, and an orifice.
Abstract:
An apparatus comprising a drivelink comprising a housing including a socket, wherein the socket comprises a cross-sectional area, and a bearing cartridge disposed within the socket, wherein a cross-sectional area of the cartridge is less than the cross-sectional area of the socket. An apparatus comprising a drivelink comprising a housing having a socket, and a bearing cartridge positioned within the socket and comprising a first portion and a second portion, wherein the first portion is configured to undergo compression when a load is applied to the drivelink, and wherein the second portion is configured to not be in tension when the load is applied to the drivelink.
Abstract:
A bearing assembly comprises a bearing, a shim disposed within the bearing, and a component disposed within the shim. The shim comprises a first material, the component comprises a second material, and the first material has an elastic modulus value that is lower than an elastic modulus value of the second material. An apparatus comprises an elastomeric bearing, a fiberglass shim, and a steel spindle that is connected to the elastomeric bearing through the shim. A method for reducing strain in an adhesive layer that connects a bearing to a component comprises selecting a shim material having an elastic modulus value that is less than an elastic modulus value of the component and providing instructions to connect the component to the shim by placing the adhesive layer between an outer surface of the component and an inner surface of the shim.
Abstract:
A device has a first electrically conductive component, a second electrically conductive component, and an electrically conductive nanocoating (ECN) electrically connecting the first electrically conductive component to the second electrically conductive component. An aircraft has an engine, a fuselage, and a device having a first electrically conductive component, a second electrically conductive component, and an electrically conductive nanocoating (ECN) electrically connecting the first electrically conductive component to the second electrically conductive component. A method of providing an electrical conduction path includes providing a first electrically conductive component, providing a second electrically conductive component, and decreasing an electrical resistance between the first electrically conductive component and the second electrically conductive component using an electrically conductive nanocoating (ECN).
Abstract:
A bearing assembly comprises a bearing, a shim disposed within the bearing, and a component disposed within the shim. The shim comprises a first material, the component comprises a second material, and the first material has an elastic modulus value that is lower than an elastic modulus value of the second material. An apparatus comprises an elastomeric bearing, a fiberglass shim, and a steel spindle that is connected to the elastomeric bearing through the shim. A method for reducing strain in an adhesive layer that connects a bearing to a component comprises selecting a shim material having an elastic modulus value that is less than an elastic modulus value of the component and providing instructions to connect the component to the shim by placing the adhesive layer between an outer surface of the component and an inner surface of the shim.
Abstract:
A damper for a rotor hub for a rotorcraft can include a housing, a piston resiliently coupled to the housing with a first elastomeric member and a second elastomeric member, a plurality of conical members, a fluid, and an orifice.
Abstract:
An aircraft component has an exterior surface and a protective nanocoating carried by the exterior surface. An aircraft has an engine, a fuselage, and a component having an exterior surface and a protective nano coating carried by the exterior surface. A method of protecting an aircraft component includes selecting at least one harmful environmental component and applying a protective nanocoating to the aircraft component, wherein the protective nanocoating is configured to protect the aircraft component from the selected harmful environmental component.