Abstract:
A method and system for dynamic adjustment of downlink/uplink resource allocation ratio in a long-term evolution (LTE) time division duplex (TDD) system is disclosed. The method includes replacing at least one uplink subframe in a subframe pattern with at least one of a mute subframe and a mute uplink pilot timeslot (UpPTS), within a geographical guard area that isolates at least two areas having different TDD allocation patterns. The method further includes scheduling an uplink transmission from at least one mobile terminal such that the at least one of the mute subframe and the mute UpPTS are unused. A simple solution or a TDD configuration index substitution solution, or any combination thereof, may be used to control the uplink transmission involving a mute subframe or a mute UpPTS.
Abstract:
The present invention discloses a method and terminal for selecting a random access resource, the method includes: the terminal receives the physical downlink control channel signaling sent by a system; the terminal determines the first subframe which meets a condition A and contains a random access resource from the subsequent subframes of the subframe receiving the physical downlink control channel signaling, the condition A is that the time difference between the first subframe and the subframe receiving the physical downlink control channel signaling is greater than or equal to k, k is the time delay defined by the physical layer of the terminal; and the terminal starts a selection on the subframe containing a random access source from the first subframe.
Abstract:
A downlink receiving status feedback method is disclosed. The method comprises: a control parameter, which is used for indicating a feedback mode used by a terminal for feeding back downlink receiving status, is carried in a radio resource control (RRC) signaling which is transmitted to the terminal (1) by a base station (2). The terminal feeds data receiving status corresponding to PDSCHs in multiple downlink sub-frames back to the base station in one uplink sub-frame according to the current feedback mode, current configurations of uplink sub-frames and downlink sub-frames, and an uplink feedback timing relation defined by a system.
Abstract:
The invention discloses a method for generating a group identifier of the random access response message. The group identifier is determined according to the serial number of the subframe in which the random access time slot of random access preamble message transmitted by the terminal lies and the serial number of the random access channel in which the random access time slot lies. A random access method and a random access response method in a cellular radio communication system are also provided. Using the method of the present invention, the terminal needs not acquire the absolute system time of the cellular system in which the random access time slot lies, and can access the cellular radio communication system rapidly and accurately.
Abstract:
The present invention discloses a method and a base station for allocating the dedicated random access resource. In the method, first, the base station allocates the dedicated random access preamble to the user equipment (UE), and allocates the predetermined physical random access channel (PRACH) to which the dedicated random access preamble corresponds in the allocated radio frame; then, the base station transmits the signaling to the UE, wherein, the signaling includes the time domain information and the frequency domain information of the predetermined PRACH. The technical solution provided by the present invention can allocate the same dedicated random access preamble for different PRACH channels to different UEs, and can improve the utilization efficiency of the dedicated random access preamble.
Abstract:
The invention discloses a method for generating a group identifier of the random access response message. The group identifier is determined according to the serial number of the subframe in which the random access time slot of random access preamble message transmitted by the terminal lies and the serial number of the random access channel in which the random access time slot lies. A random access method and a random access response method in a cellular radio communication system are also provided. Using the method of the present invention, the terminal needs not acquire the absolute system time of the cellular system in which the random access time slot lies, and can access the cellular radio communication system rapidly and accurately.
Abstract:
The present invention discloses a method and terminal for selecting a random access resource, the method includes: the terminal receives the physical downlink control channel signaling sent by a system; the terminal determines the first subframe which meets a condition A and contains a random access resource from the subsequent subframes of the subframe receiving the physical downlink control channel signaling, the condition A is that the time difference between the first subframe and the subframe receiving the physical downlink control channel signaling is greater than or equal to k, k is the time delay defined by the physical layer of the terminal; and the terminal starts a selection on the subframe containing a random access source from the first subframe.
Abstract:
A terminal random access method for a cellular radio communications system and a method for generating a group identifier are provided. In the terminal random access method for a cellular radio communications system, random access preamble message is transmitted by a terminal to a base station in a random access time slot in a radio frame; location information of the random access time slot in the radio frame and that in the frequency domain are combined to generate a group identifier and sending a random access response message to the terminal after adding the group identifier and an individual identifier that corresponds to the random access preamble message to the random access response message by the base station; it is judged whether the random access response message that corresponds to the sent random access preamble message is received, by judging whether the group identifier and the individual identifier within the received random access response message are all expected values.
Abstract:
A terminal random access method for a cellular radio communications system and a method for generating a group identifier are provided. The terminal random access method for a cellular radio communications system includes steps of: transmitting random access preamble message by a terminal to a base station in a random access time slot in a radio frame; combining location information of the random access time slot in the radio frame and that in the frequency domain to generate a group identifier and sending a random access response message to the terminal after adding the group identifier and an individual identifier that corresponds to the random access preamble message to the random access response message by the base station; judging whether the random access response message that corresponds to the sent random access preamble message is received, by judging whether the group identifier and the individual identifier within the received random access response message are all expected values. This invention provides fast and accurate access to the cellular radio communications system for the terminal and allows simple and easy operations to set a group identifier in the same way regardless of whether or not the configuration of the random access time slot changes.
Abstract:
A method and a system to provide daisy chain distribution in data centers are provided. A node identification module identifies three or more data nodes of a plurality of data nodes. The identification of three or more data nodes indicates that the respective data nodes are to receive a copy of a data file. A connection creation module to, using one or more processors, create communication connections between the three or more data nodes. The communication connections form a daisy chain beginning at a seeder data node of the three or more data nodes and ending at a terminal data node of the three or more data nodes.