Abstract:
A common IP layer client device interface within an IP multimedia gateway (IMG) is configured to connect client devices to broadband IP networks such as the Internet based on determined device capabilities. Broadband IP network interfaces within the IMG are configured to enable communication between the IMG and broadband IP networks based on the determined device capabilities. Content provided by various service managers are communicated with the client devices utilizing the common IP layer client device interface and the configured network interfaces. Network capabilities may be determined during the device and network discovery. Protocol translation, media transcoding and/or dynamic device configuration may be performed based on the determined device capabilities, and based on the determined network capabilities. The IMG may adjust system timing and manage power consumptions for service deployment over corresponding client devices. Information may be routed or distributed by the IMRG among the client devices when needed.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in the bonded channel group.
Abstract:
A common IP layer client device interface within an IP multimedia gateway (IMG) is configured to connect client devices to broadband IP networks such as the Internet based on determined device capabilities. Broadband IP network interfaces within the IMG are configured to enable communication between the IMG and broadband IP networks based on the determined device capabilities. Content provided by various service managers are communicated with the client devices utilizing the common IP layer client device interface and the configured network interfaces. Network capabilities may be determined during the device and network discovery. Protocol translation, media transcoding and/or dynamic device configuration may be performed based on the determined device capabilities, and based on the determined network capabilities. The IMG may adjust system timing and manage power consumptions for service deployment over corresponding client devices. Information may be routed or distributed by the IMRG among the client devices when needed.
Abstract:
A system controls a transmission of a sequence of compressed video data from an encoder buffer to a network for delivery to a decoder buffer. Control of the transmission includes to: determine characteristics of a video transmission path between the encoder buffer and the decoder buffer, the characteristics comprising at least one of a buffer size of the decoder buffer, an input rate of the decoder buffer, and a buffer size of an equivalent intermediary buffer of the video transmission path; determine a transmission rate from the characteristics of the video transmission path and from the sequence of compressed video data, the transmission rate being determined such that a target quality of service value can be guaranteed for the entire sequence of compressed video data transmitted at the determined transmission rate to the decoder buffer; and control transmission of the sequence of compressed video data at the determined transmission rate.
Abstract:
The disclosure is directed systems and methods for providing robust coexistence for LAA-LTE, including physical layer enhancements and options to support robust coexistence for LAA-LTE, and deployment and evaluation scenarios and methods.
Abstract:
A media gateway (MG) that services a plurality of client devices, may be handled at least a portion of video conferencing (VC) processing during a VC call between at least one of said plurality of client devices and at least one other VC client. The portion of the VC processing handled by the media gateway may be offloaded from a centralized VC multipoint control unit (MCU). The MG may handle one or more VC MCU functions, which may comprise video conferencing call control and/or management and/or audio/video (AV) transcoding. The MG may perform localized quality of service (QoS) management, to select, and adaptively control and/or configure resources and/or local links used in the MG and/or in VC clients or neighboring MGs connected to the MG, during VC operations, such as in generating, handling, and/or communicating data or content exchanged during VC calls.
Abstract:
A common IP layer client device interface within an IP multimedia gateway (IMG) is configured to connect client devices to broadband IP networks such as the Internet based on determined device capabilities. Broadband IP network interfaces within the IMG are configured to enable communication between the IMG and broadband IP networks based on the determined device capabilities. Content provided by various service managers are communicated with the client devices utilizing the common IP layer client device interface and the configured network interfaces. Network capabilities may be determined during the device and network discovery. Protocol translation, media transcoding and/or dynamic device configuration may be performed based on the determined device capabilities, and based on the determined network capabilities. The IMG may adjust system timing and manage power consumptions for service deployment over corresponding client devices. Information may be routed or distributed by the IMRG among the client devices when needed.
Abstract:
Different data communication architectures deliver a wide variety of content, including audio and video content, to consumers. The architectures employ channel bonding to deliver more bandwidth than any single communication channel can carry. In some implementations, the communication architectures distribute data across multiple orbital angular momentum channels in the bonded channel group.
Abstract:
A media gateway (MG) that services a plurality of client devices, may be handled at least a portion of video conferencing (VC) processing during a VC call between at least one of said plurality of client devices and at least one other VC client. The portion of the VC processing handled by the media gateway may be offloaded from a centralized VC multipoint control unit (MCU). The MG may handle one or more VC MCU functions, which may comprise video conferencing call control and/or management and/or audio/video (AV) transcoding. The MG may perform localized quality of service (QoS) management, to select, and adaptively control and/or configure resources and/or local links used in the MG and/or in VC clients or neighboring MGs connected to the MG, during VC operations, such as in generating, handling, and/or communicating data or content exchanged during VC calls.