Abstract:
An information gathering apparatus includes an information acquisition sensor unit to acquire information and a propelling system to fly in air. The information gathering apparatus includes a supporting unit and a controller. The supporting unit supports the propelling system in the first and second configurations. The controller moves the supporting unit such that the supporting unit supports the propelling system in the second configuration after the information gathering apparatus is thrown up in a state where the supporting unit supports the propelling system in the first configuration.
Abstract:
A direction estimating device includes a plurality of antennas placed on a front surface of a board to have different main lobe directions of directivities, at least one antenna placed on a back surface of the board, a radiowave intensity obtainer that obtains a received signal strength indication (RSSI) of a radiowave received by the plurality of antennas placed on the front surface of the board, and by the at least one antenna placed on the back surface of the board, and an estimator that estimates an arriving direction of the radiowave based on the RSSI of the radiowave obtained by the radiowave intensity obtainer.
Abstract:
A moving device includes an imaging unit, an acquiring unit, a determining unit and an imaging control unit. The acquiring unit is configured to acquire a state at a time when the moving device is released from a user. The determining unit is configured to determine an imaging manner to control the imaging unit after the time of being released, based on the state acquired by the acquiring unit. The imaging control unit is configured to control the imaging unit in the imaging manner determined by the determining unit.
Abstract:
A flight device includes at least one propelling unit and a controller unit for flying in the air, and the flight device is thrown by a user. The controller unit drives the propelling unit after throwing is performed by the user, such that the flight device flies based on a state of the flight device at a moment when the throwing is performed.
Abstract:
A wireless communication device includes: a wireless communication module configured to receive a plurality of notification signals that are successively transmitted from another wireless communication device; and a processor that is connected to the wireless communication module, the processor calculating a clock error between a clock in the wireless communication device and a clock in the other wireless communication device based on one or more of the notification signals that are received, and determining a timing at which to make the wireless communication module ready to receive a next notification signal from the other wireless communication device in accordance with the calculated clock error and a time interval at which the next notification signal will be transmitted from the other wireless communication device, the time interval being a predetermined fixed time interval or contained in the notification signal that has been received immediately prior to the next notification signal.
Abstract:
In automatic travel control of a flying device towards a target, when a current distance from the target is large in comparison to a prescribed distance threshold, a controller of the flying device performs velocity feedback PID control to control the flight propulsion unit of the flying device. When the current distance becomes small in comparison to the prescribed distance threshold, the controller performs a hybrid of the velocity feedback PID control and position feedback PID control to control the flight propulsion unit such that as the flying device approaches the target, the position feedback PID control becomes more dominant than the velocity PID control. The processor calculates a weighted average of the respective manipulated variables with dynamically adjusted weights to achieve the hybrid control.
Abstract:
A wireless communication device includes: a wireless communication module configured to receive a plurality of notification signals that are successively transmitted from another wireless communication device; and a processor that is connected to the wireless communication module, the processor calculating a clock error between a clock in the wireless communication device and a clock in the other wireless communication device based on one or more of the notification signals that are received, and determining a timing at which to make the wireless communication module ready to receive a next notification signal from the other wireless communication device in accordance with the calculated clock error and a time interval at which the next notification signal will be transmitted from the other wireless communication device, the time interval being a predetermined fixed time interval or contained in the notification signal that has been received immediately prior to the next notification signal.