Abstract:
A propulsion system assembly includes a propeller and a motor configured to drive the propeller to rotate. The propeller includes one of a first body and a second body. The motor comprises the other one of the first body and the second body. The propulsion system assembly also includes a locking mechanism configured to detachably connecting the first body and the second body. The locking mechanism includes a locking member and a position limiting lock catch. The locking member is configured to lock the first body and the second body. The locking member includes locking parts located at at least two sides of the locking member. When the locking parts of the locking member rotate to a locking position, the position limiting lock catch is mounted to a side of the locking parts, to restrain the locking member from rotating relative to the first body.
Abstract:
A foldable drone is provided to improve the portability of the drone, which includes a drone body and a rotary wing part connected to the drone body. The rotary wing part includes a first rotary wing module and a second rotary wing module with each having at least one rotary wing, and the first rotary wing module and the second rotary wing module are respectively articulated to two sides of the drone body, to allow the first rotary wing module and the second rotary wing module to rotate about their respective articulating shafts, so as to be folded or unfolded.
Abstract:
A system and method for enhancing distribution logistics and surveillance ranges with unmanned aerial vehicles (UAV) and at least one dock in a dock network. The UAV remains in communication with the dock for enhancing distribution logistics of at least one package and increasing the range of surveillance for the unmanned aerial vehicle. From the dock, the UAV delivers the package to a destination point, obtains the package from a pick up point, recharges the unmanned aerial vehicle throughout the network of docks, and increases the range of distribution and surveillance. A logistics software controls the delivery and surveillance. A wireless communication device enables communication between the UAV and the dock. Light indicators indicate status of the package and the operational status of the UAV. A camera captures an image of the package in the dock. A motion detector detects the UAV for regulating access for loading/unloading and docking.
Abstract:
Disclosed are embodiments of a rotary-wing drone that includes a drone body with two front linking arms and two rear linking arms extending from the drone body with a propulsion unit located on a distal end of the linking arms. The points of fixation of the front linking arms and the points of fixation of the rear linking arms are located at different respective heights with respect to the horizontal median plane of the drone body. The two front linking arms of the drone may form a first angle of inclination with respect to the horizontal median plane of the drone body and the two rear linking arms may form a second angle of inclination. Additionally, the linking arms of the drone may further be adapted to be folded over along the drone body.
Abstract:
Stowable and deployable unmanned aerial vehicles (UAVs), and associated systems and methods are disclosed. A UAV in accordance with a particular embodiment includes a main body, frames carried by the main body, and motors carried by the frames. At least two frames are positioned to move relative to each other between a stowed configuration in which the frames are generally aligned proximate to each other and a deployed configuration different from the stowed configuration. The main body can include a first body portion pivotably connected to a second body portion. In a stowed configuration, the body portions can generally overlap each other. A UAV in accordance with particular embodiments includes a modular electronics unit carried by the UAV and including a camera, a battery, and a vehicle controller. Modular electronics units can be configured to be removably connected to and disconnected from the UAV and other vehicles.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
An unmanned aerial vehicle (UAV), a stand for launching, landing, testing, refueling and recharging a UAV, and methods for testing, landing and launching the UAV are disclosed. Further, embodiments may include transferring a payload onto or off of the UAV, and loading flight planning and diagnostic maintenance information to the UAV.
Abstract:
A fully protected drone includes a drone body and a rotary wing connected to the drone body, and further includes a protection housing connected to the drone body. The protection housing is a meshed closed housing and has a hollow cavity. The rotary wing is mounted in the hollow cavity. According to the present application, the rotary wing is mounted in the hollow cavity of the protection housing, the rotary wing will not contact the human body, thus an operator can fly or retrieve the drone by hand, which improves the operation convenience of the rotary wing, and improves the operation security to a large extent. The protection housing is configured as a meshed closed housing. The rotary wing is mounted in the protection housing connected to the drone body, thereby reducing the overall height of the drone and improving the portability of the drone.
Abstract:
A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Abstract:
An autonomous battery replacement station for an unmanned aerial vehicle (UAV) is provided. The UAV includes a replaceable battery. The station includes (a) a landing platform configured to receive the UAV, (b) a storage location configured to store a replacement battery for the UAV, and (c) a means for swapping the replaceable battery on the UAV with a replacement battery from the storage location.