Abstract:
A machine navigation system includes a monitoring mechanism for monitoring configuration of an implement movable between configurations relative to a frame such that a center of mass of the machine moves in response to the moving of the implement. A second monitoring mechanism monitors track speed in the machine. A location of an origin of the track speed varies based upon location of the center of mass. A control unit is coupled with the monitoring mechanisms and structured to determine a control term for compensating for movement of a reference location on the machine relative to the track speed origin. The control unit further calculates velocity based on the track speed and the compensatory control term.
Abstract:
A system, method, and non-transitory computer-readable storage medium for range map generation is disclosed. The method may include receiving an image from a camera and receiving a 3D point cloud from a range detection unit. The method may further include transforming the 3D point cloud from range detection unit coordinates to camera coordinates. The method may further include projecting the transformed 3D point cloud into a 2D camera image space corresponding to the camera resolution to yield projected 2D points. The method may further include filtering the projected 2D points based on a range threshold. The method may further include generating a range map based on the filtered 2D points and the image.
Abstract:
A system having a primary inertial measurement unit and a secondary inertial measurement unit configured to generate a primary position signal and a secondary position signal respectively is provided. The system also includes an error detection module communicably coupled to the primary inertial measurement unit and the secondary inertial measurement unit. The error detection module is configured to receive the primary position signal and the secondary position signal and detect if an out-range error is present in at least one of the primary position signal and the secondary position signal. The error detection module is also configured to detect if an in-range error is present in at least one of the primary position signal and the secondary position signal and determine an action to be performed based on the presence of at least one of the out-range error and the in-range error.
Abstract:
A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.
Abstract:
A motion determination system is disclosed. The system may calculate one or more visual-odometry outputs. The system may determine a plurality of figure of merits, wherein each of the plurality of figure of merits is associated with one of a plurality of parameters affecting the calculation of the one or more visual-odometry outputs, and each of the plurality of figure of merits is indicative of an accuracy of the visual-odometry outputs. The system may calculate a combined figure of merit based on the plurality of figure of merits. The system may calculate an error estimate for the one or more visual-odometry outputs based on the combined figure of merit.
Abstract:
An image processing system has a plurality of cameras and a display that are mounted on a machine. The plurality of cameras are configured to generate image data for an environment of the machine. The image processing system also has a processor connected to the plurality of cameras and the display. The processor is configured to access the image data from the plurality of cameras, access parameters associated with the plurality of cameras, generate a unified image by combining the image data from the plurality of cameras based at least in part on the parameters, access state data associated with the machine, select a portion of the unified image based at least in part on the state data, and render the portion of the unified image on the display.
Abstract:
A machine navigation system includes a monitoring mechanism for monitoring configuration of an implement movable between configurations relative to a frame such that a center of mass of the machine moves in response to the moving of the implement. A second monitoring mechanism monitors track speed in the machine. A location of an origin of the track speed varies based upon location of the center of mass. A control unit is coupled with the monitoring mechanisms and structured to determine a control term for compensating for movement of a reference location on the machine relative to the track speed origin. The control unit further calculates velocity based on the track speed and the compensatory control term.
Abstract:
A motion determination system is disclosed. The system may receive a first camera image and a second camera image. The system may receive a first range image corresponding to the first camera image. The system may generate a first range map by fusing the first camera image and the first range image. The system may iteratively process a plurality of first features in the first range map to determine a change in position of the machine. The plurality of second features may correspond to the plurality of first features, and each of the plurality of first and second features is denoted by feature points in an image space of the camera.
Abstract:
A motion determination system is disclosed. The system may calculate one or more visual-odometry outputs. The system may determine a plurality of figure of merits, wherein each of the plurality of figure of merits is associated with one of a plurality of parameters affecting the calculation of the one or more visual-odometry outputs, and each of the plurality of figure of merits is indicative of an accuracy of the visual-odometry outputs. The system may calculate a combined figure of merit based on the plurality of figure of merits. The system may calculate an error estimate for the one or more visual-odometry outputs based on the combined figure of merit.