Abstract:
A multilayer polymer film comprising an outer skin layer, an inner seal layer and at least one core layer disposed between the inner and outer skin layer, wherein the outer skin layers comprises a metallocene-catalyzed ethylene polymer having a density of equal to or greater than about 0.945 g/cc and a melt index equal to or greater than 0.5 g/10 min. A multilayer polymer film comprising a metallocene-catalyzed high-density polyethylene homopolymer skin layer and at least one core layer comprising a high-density polyethylene having a melt index of less than or equal to 2.0 g/10 min. A multilayer polymer film comprising at least a skin layer and a core layer wherein the skin layer comprises a metallocene-catalyzed ethylene polymer provided from a catalyst composition comprising a single metallocene and an activator support.
Abstract:
A catalyst composition comprising (i) a metal salt complex of an imine bis(phenol) compound characterized by Structure 1: Wherein O and N represent oxygen and nitrogen respectively; R comprises a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; R2 and R3 can each independently be hydrogen, a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; and Q is a donor group; and (ii) a metallocene complex.
Abstract:
Processes for producing n-heptane from a mixture of 1-hexene and 1-octene in the presence of a suitable isomerization-metathesis catalyst followed by a hydrogenation step are disclosed. Integrated manufacturing systems for producing n-heptane with minimal waste also are disclosed.
Abstract:
A polymer reactor-blend comprising at least a first component having a polydispersity index of greater than about 20 and is present in an amount of from about 1 wt. % to about 99 wt. % based on the total weight of the polymer and a second component having a polydispersity index of less than about 20 and is present in an amount of from about 1 wt. % to about 99 wt. % based on the total weight of the polymer wherein a molecular weight distribution of the second component lies within a molecular weight distribution of the first component.