Abstract:
Embodiments include receiving an indication of a data storage module to be associated with a tenant of a distributed storage system, allocating a partition of a disk for data of the tenant, creating a first association between the data storage module and the disk partition, creating a second association between the data storage module and the tenant, and creating rules for the data storage module based on one or more policies configured for the tenant. Embodiments further include receiving an indication of a type of subscription model selected for the tenant, and selecting the disk partition to be allocated based, at least in part, on the subscription model selected for the tenant. More specific embodiments include generating a storage map indicating the first association between the data storage module and the disk partition and indicating the second association between the data storage module and the tenant.
Abstract:
Embodiments include receiving an indication of a data storage module to be associated with a tenant of a distributed storage system, allocating a partition of a disk for data of the tenant, creating a first association between the data storage module and the disk partition, creating a second association between the data storage module and the tenant, and creating rules for the data storage module based on one or more policies configured for the tenant. Embodiments further include receiving an indication of a type of subscription model selected for the tenant, and selecting the disk partition to be allocated based, at least in part, on the subscription model selected for the tenant. More specific embodiments include generating a storage map indicating the first association between the data storage module and the disk partition and indicating the second association between the data storage module and the tenant.
Abstract:
Embodiments include obtaining at least one system metric of a distributed storage system, generating one or more recovery parameters based on the at least one system metric, identifying at least one policy associated with data stored in a storage node of a plurality of storage nodes in the distributed storage system, and generating a recovery plan for the data based on the one or more recovery parameters and the at least one policy. In more specific embodiments, the recovery plan includes a recovery order for recovering the data. Further embodiments include initiating a recovery process to copy replicas of the data from a second storage node to a new storage node, wherein the replicas of the data are copied according to the recovery order indicated in the recovery plan.
Abstract:
A method for assisting evaluation of anomalies in a distributed storage system is disclosed. The method includes a step of monitoring at least one system metric of the distributed storage system. The method further includes steps of maintaining a listing of patterns of the monitored system metric comprising patterns which previously did not result in a failure within one or more nodes of the distributed storage system, and, based on the monitoring, identifying a pattern (i.e., a time series motif) of the monitored system metric as a potential anomaly in the distributed storage system. The method also includes steps of automatically (i.e. without user input) performing a similarity search to determine whether the identified pattern satisfies one or more predefined similarity criteria with at least one pattern of the listing, and, upon positive determination, excepting the identified pattern from being identified as the potential anomaly.
Abstract:
Embodiments include receiving an indication of a data storage module to be associated with a tenant of a distributed storage system, allocating a partition of a disk for data of the tenant, creating a first association between the data storage module and the disk partition, creating a second association between the data storage module and the tenant, and creating rules for the data storage module based on one or more policies configured for the tenant. Embodiments further include receiving an indication of a type of subscription model selected for the tenant, and selecting the disk partition to be allocated based, at least in part, on the subscription model selected for the tenant. More specific embodiments include generating a storage map indicating the first association between the data storage module and the disk partition and indicating the second association between the data storage module and the tenant.
Abstract:
Approaches are disclosed for improving performance of logical disks. A logical disk can comprise several storage devices. In an object storage system (OSS), when a logical disk stores a file, fragments of the file are stored distributed across the storage devices. Each of the fragments of the file is asymmetrically stored in (write) and retrieved from (read) the storage devices. The performance of the logical disk is improved by reconfiguring one or more of the storage devices based on an influence that each of the storage devices has on performance of the logical disk and the asymmetric read and write operations of each of the storage devices. For example, latency of the logical disk can be reduced by reconfiguring one or more of the plurality of storage disks based on a proportion of the latency of the logical device that is attributable to each of the plurality of storage devices.
Abstract:
A method for assisting evaluation of anomalies in a distributed storage system is disclosed. The method includes a step of monitoring at least one system metric of the distributed storage system. The method further includes steps of maintaining a listing of patterns of the monitored system metric comprising patterns which previously did not result in a failure within one or more nodes of the distributed storage system, and, based on the monitoring, identifying a pattern (i.e., a time series motif) of the monitored system metric as a potential anomaly in the distributed storage system. The method also includes steps of automatically (i.e. without user input) performing a similarity search to determine whether the identified pattern satisfies one or more predefined similarity criteria with at least one pattern of the listing, and, upon positive determination, excepting the identified pattern from being identified as the potential anomaly.
Abstract:
Approaches are disclosed for improving performance of logical disks. A logical disk can comprise several storage devices. In an object storage system (OSS), when a logical disk stores a file, fragments of the file are stored distributed across the storage devices. Each of the fragments of the file is asymmetrically stored in (write) and retrieved from (read) the storage devices. The performance of the logical disk is improved by reconfiguring one or more of the storage devices based on an influence that each of the storage devices has on performance of the logical disk and the asymmetric read and write operations of each of the storage devices. For example, latency of the logical disk can be reduced by reconfiguring one or more of the plurality of storage disks based on a proportion of the latency of the logical device that is attributable to each of the plurality of storage devices.
Abstract:
Embodiments include obtaining at least one system metric of a distributed storage system, generating one or more recovery parameters based on the at least one system metric, identifying at least one policy associated with data stored in a storage node of a plurality of storage nodes in the distributed storage system, and generating a recovery plan for the data based on the one or more recovery parameters and the at least one policy. In more specific embodiments, the recovery plan includes a recovery order for recovering the data. Further embodiments include initiating a recovery process to copy replicas of the data from a second storage node to a new storage node, wherein the replicas of the data are copied according to the recovery order indicated in the recovery plan.
Abstract:
Embodiments include receiving an indication of a data storage module to be associated with a tenant of a distributed storage system, allocating a partition of a disk for data of the tenant, creating a first association between the data storage module and the disk partition, creating a second association between the data storage module and the tenant, and creating rules for the data storage module based on one or more policies configured for the tenant. Embodiments further include receiving an indication of a type of subscription model selected for the tenant, and selecting the disk partition to be allocated based, at least in part, on the subscription model selected for the tenant. More specific embodiments include generating a storage map indicating the first association between the data storage module and the disk partition and indicating the second association between the data storage module and the tenant.