Abstract:
The present disclosure is directed towards systems and methods for application performance measurement. A device may receive a first document for transmission to a client, comprising instructions for the client to transmit a request for an embedded object. A flow monitor executed the device may generate a unique identification associated with the first document, the unique identification identifying a first access of the first document, and transmit the first document and unique identification to the client. The device may receive, from the client, a request for the embedded object comprising the unique identification, and transmit, to a server, the request for the embedded object at a transmit time. The device may receive, from the server, the embedded object at a receipt time, and may transmit a performance record comprising an identification of the object, the server, the transmit time, the receipt time, and the unique identification to a data collector.
Abstract:
The present disclosure is directed generally to systems and methods for changing an application layer transaction timeout to prevent Denial of Service attacks. A device intermediary to a client and a server may receive, via a transport layer connection between the device and the client, a packet of an application layer transaction. The device may increment an attack counter for the transport layer connection by a first predetermined amount responsive to a size of the packet being less than a predetermined fraction of a maximum segment size for the transport layer connection. The device may increment the attack counter by a second predetermined amount responsive to an inter-packet-delay between the packet and a previous packet being more than a predetermined multiplier of a round trip time. The device may change a timeout for the application layer transaction responsive to comparing the attack counter to a predetermined threshold.
Abstract:
The present disclosure is directed generally to systems and methods for changing an application layer transaction timeout to prevent Denial of Service attacks. A device intermediary to a client and a server may receive, via a transport layer connection between the device and the client, a packet of an application layer transaction. The device may increment an attack counter for the transport layer connection by a first predetermined amount responsive to a size of the packet being less than a predetermined fraction of a maximum segment size for the transport layer connection. The device may increment the attack counter by a second predetermined amount responsive to an inter-packet-delay between the packet and a previous packet being more than a predetermined multiplier of a round trip time. The device may change a timeout for the application layer transaction responsive to comparing the attack counter to a predetermined threshold.
Abstract:
The present disclosure is directed generally to systems and methods for changing an application layer transaction timeout to prevent Denial of Service attacks. A device intermediary to a client and a server may receive, via a transport layer connection between the device and the client, a packet of an application layer transaction. The device may increment an attack counter for the transport layer connection by a first predetermined amount responsive to a size of the packet being less than a predetermined fraction of a maximum segment size for the transport layer connection. The device may increment the attack counter by a second predetermined amount responsive to an inter-packet-delay between the packet and a previous packet being more than a predetermined multiplier of a round trip time. The device may change a timeout for the application layer transaction responsive to comparing the attack counter to a predetermined threshold.
Abstract:
The present disclosure is directed towards systems and methods for application performance measurement. A device may receive a first document for transmission to a client, comprising instructions for the client to transmit a request for an embedded object. A flow monitor executed the device may generate a unique identification associated with the first document, the unique identification identifying a first access of the first document, and transmit the first document and unique identification to the client. The device may receive, from the client, a request for the embedded object comprising the unique identification, and transmit, to a server, the request for the embedded object at a transmit time. The device may receive, from the server, the embedded object at a receipt time, and may transmit a performance record comprising an identification of the object, the server, the transmit time, the receipt time, and the unique identification to a data collector.
Abstract:
The present disclosure is directed generally to systems and methods for changing an application layer transaction timeout to prevent Denial of Service attacks. A device intermediary to a client and a server may receive, via a transport layer connection between the device and the client, a packet of an application layer transaction. The device may increment an attack counter for the transport layer connection by a first predetermined amount responsive to a size of the packet being less than a predetermined fraction of a maximum segment size for the transport layer connection. The device may increment the attack counter by a second predetermined amount responsive to an inter-packet-delay between the packet and a previous packet being more than a predetermined multiplier of a round trip time. The device may change a timeout for the application layer transaction responsive to comparing the attack counter to a predetermined threshold.