Abstract:
Provided herein is an alkane-metabolizing cell that is unable to convert propionyl-CoA into methylmalonyl-CoA or 2-metylcitrate synthase. Depending on which enzymes are present in the cell, the cell can produce acrylate or a precursor for the same (e.g., propionate, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, acrylyl-CoA) that can be readily converted to acrylate enzymatically (e.g., in the cell) or by chemical treatment. In one embodiment, the cell may contain a cytochrome P450 or alkane oxidase enzyme that allows the production of 3-hydroxypropionyl-CoA, which can be readily converted to 3-hydroxypropionate. In order to make such compounds, the cell may be grown in the presence of an odd-numbered chain alkane (e.g., pentane or heptane), although another odd-numbered chain alkane may be used. In another embodiment, the cell may contain acyl-CoA oxidase, enoyl-CoA hydratase, and hydrolase.
Abstract:
Provided herein is an alkane-metabolizing cell that is unable to convert propionyl-CoA into methylmalonyl-CoA or 2-metylcitrate synthase. Depending on which enzymes are present in the cell, the cell can produce acrylate or a precursor for the same (e.g., propionate, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, acrylyl-CoA) that can be readily converted to acrylate enzymatically (e.g., in the cell) or by chemical treatment. In one embodiment, the cell may contain a cytochrome P450 or alkane oxidase enzyme that allows the production of 3-hydroxypropionyl-CoA, which can be readily converted to 3-hydroxypropionate. In order to make such compounds, the cell may be grown in the presence of an odd-numbered chain alkane (e.g., pentane or heptane), although another odd-numbered chain alkane may be used. In another embodiment, the cell may contain acyl-CoA oxidase, enoyl-CoA hydratase, and hydrolase.