Abstract:
A fluid injection system includes a fluid injector assembly; a fluid conditioning module having an outlet port that is fluidly coupled to an inlet port of the fluid injector assembly; an injector assembly outlet conduit fluidly coupled to an outlet port of the fluid injector assembly and disposed downstream of the fluid injector assembly, the injector assembly outlet conduit defining a pressure measurement port and a flow-restricting orifice, the pressure measurement port being disposed upstream of the flow-restricting orifice along the direction of fluid flow through the fluid injector assembly; a pressure sensor fluidly coupled to the pressure measurement port; and a controller operatively coupled to the fluid conditioning module and the pressure sensor. The controller is configured to adjust a flowrate of a fluid through the injector assembly inlet conduit based on a pressure signal from the pressure sensor.
Abstract:
A fuel system for an internal combustion engine includes a fuel control system having a fueling control unit structured to determine a test point on a tip wear-sensitive region of a fuel injector delivery curve, and store measurements of pressure drops in a pressurized fuel reservoir caused by injections of fuel at the test point. The fueling control unit is further structured to produce an injector health signal based on the stored measurements of pressure drop. Related methodology and control logic for calculation of wear parameters for injection signal duration electronic trimming and prognostic health determinations are also disclosed.
Abstract:
A fluid injection system includes a fluid injector assembly; a fluid conditioning module having an outlet port that is fluidly coupled to an inlet port of the fluid injector assembly; an injector assembly outlet conduit fluidly coupled to an outlet port of the fluid injector assembly and disposed downstream of the fluid injector assembly, the injector assembly outlet conduit defining a pressure measurement port and a flow-restricting orifice, the pressure measurement port being disposed upstream of the flow-restricting orifice along the direction of fluid flow through the fluid injector assembly; a pressure sensor fluidly coupled to the pressure measurement port; and a controller operatively coupled to the fluid conditioning module and the pressure sensor. The controller is configured to adjust a flowrate of a fluid through the injector assembly inlet conduit based on a pressure signal from the pressure sensor.
Abstract:
A fuel system for an internal combustion engine includes a fuel control system having a fueling control unit structured to determine a test point on a tip wear-sensitive region of a fuel injector delivery curve, and store measurements of pressure drops in a pressurized fuel reservoir caused by injections of fuel at the test point. The fueling control unit is further structured to produce an injector health signal based on the stored measurements of pressure drop. Related methodology and control logic for calculation of wear parameters for injection signal duration electronic trimming and prognostic health determinations are also disclosed.
Abstract:
A fuel system for a machine is disclosed. The fuel system may include a fuel pump, a pump motor configured to drive the fuel pump, and a pump controller. The pump controller may be operatively connected to the pump motor, a main battery bank of the machine via a power wire and a ground wire, and an engine controller of the machine via a communication wire. The pump controller may be configured to detect a failure of at least one of the communication wire, the power wire, and the ground wire. The pump controller may also be configured to adjust a power output and an operation of the pump motor based on the detected failure of at least one of the communication wire, the power wire, and the ground wire.
Abstract:
Operating a machine system includes triggering, based on activation of an on-board electronic control system, interrogation of electronically controlled components installed in a machine to read a plurality of electronic trim files each resident on a different one of the electronically controlled components. A data structure on an electronic storage medium in the control system is populated with the electronic trim files each time the control system is activated, such as by turning on an ignition switch. Operating the machine system also includes outputting control signals based on the electronic trim files to run the machine system based on operation of the electronically controlled components responsive to the outputted control signals.
Abstract:
Operating a machine system includes triggering, based on activation of an on-board electronic control system, interrogation of electronically controlled components installed in a machine to read a plurality of electronic trim files each resident on a different one of the electronically controlled components. A data structure on an electronic storage medium in the control system is populated with the electronic trim files each time the control system is activated, such as by turning on an ignition switch. Operating the machine system also includes outputting control signals based on the electronic trim files to run the machine system based on operation of the electronically controlled components responsive to the outputted control signals.
Abstract:
A fuel system for a machine is disclosed. The fuel system may include a fuel pump, a pump motor configured to drive the fuel pump, and a pump controller. The pump controller may be operatively connected to the pump motor, a main battery bank of the machine via a power wire and a ground wire, and an engine controller of the machine via a communication wire. The pump controller may be configured to detect a failure of at least one of the communication wire, the power wire, and the ground wire. The pump controller may also be configured to adjust a power output and an operation of the pump motor based on the detected failure of at least one of the communication wire, the power wire, and the ground wire.