Abstract:
An apparatus can include an inverter to provide an output N-phase alternating-current to an external component. When N equals two, a phase of the N phases can include an upper gate and a lower gate. The apparatus can also include a current detector configured to detect a phase current magnitude of the output alternating current. The apparatus can also include a controller coupled to the current detector and to the inverter. The controller can generate a gate command for controlling a gate of the inverter. The controller can also determine a value for a current threshold less than a shutoff current threshold for the external component. The controller can provide a protection command to turn off the upper gate of a corresponding phase of the inverter responsive to detecting that the phase current magnitude is greater than the current threshold.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A control system for a multi-phase switched reluctance (SR) machine, having at least two phases, is disclosed. The control system may include a converter circuit and a controller. The controller may include a phase voltage estimator module configured to determine a first phase voltage and a second phase voltage associated with a second phase second phase for the SR machine. The controller may further include a flux estimator module configured to determine first and second estimated fluxes, the first estimated flux associated with the first phase and based on the first phase voltage and an associated first mutual voltage and the second estimated flux the second estimated flux associated with the second phase and based on the second phase voltage and an associated second mutual voltage, and a position observer module configured to determine a rotor position based at least partially on the first estimated flux, the second mutual flux.
Abstract:
A control system for a multi-phase switched reluctance (SR) machine, having at least two phases, is disclosed. The control system may include a converter circuit and a controller. The controller may include a phase voltage estimator module configured to determine a first phase voltage and a second phase voltage associated with a second phase second phase for the SR machine. The controller may further include a flux estimator module configured to determine first and second estimated fluxes, the first estimated flux associated with the first phase and based on the first phase voltage and an associated first mutual voltage and the second estimated flux the second estimated flux associated with the second phase and based on the second phase voltage and an associated second mutual voltage, and a position observer module configured to determine a rotor position based at least partially on the first estimated flux, the second mutual flux.
Abstract:
Techniques to limit electrical power when forming an electrical grid using an active front end unit having an inverter that is coupled to a capacitor (and inductor) that is coupled to an electrical grid. For example, to limit power, the integration of a commanded frequency of the system can be limited to be within a specified phase delta of a measured phase angle of an electrical grid voltage vector. The calculation from power limit to phase delta can be done when the phase of the electrical grid voltage vector has been determined to be accurate and is calculated based on the measured capacitor voltage, grid voltage, and the estimated voltage drop across the output components of the system.
Abstract:
A control system for a switched reluctance (SR) machine having a rotor and a stator is provided. The control system may include a converter circuit in electrical communication between the stator and a common bus, and a controller configured to monitor a bus voltage of the converter circuit and a phase current of the SR machine. The controller may be configured to determine a phase voltage based on one or more of main pulses and any diagnostic pulses, determine an estimated flux based on the phase voltage and an associated mutual voltage, determine a rotor position based at least partially on the estimated flux, and control the SR machine based on the rotor position and a desired torque.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
Techniques to limit electrical power when forming an electrical grid using an active front end unit having an inverter that is coupled to a capacitor (and inductor) that is coupled to an electrical grid. For example, to limit power, the integration of a commanded frequency of the system can be limited to be within a specified phase delta of a measured phase angle of an electrical grid voltage vector. The calculation from power limit to phase delta can be done when the phase of the electrical grid voltage vector has been determined to be accurate and is calculated based on the measured capacitor voltage, grid voltage, and the estimated voltage drop across the output components of the system.
Abstract:
Techniques to reduce discontinuities in power, for example, by controlling an electrical power output of an active front end unit during a transition between a first operating mode and a second operating mode. In some examples, to reduce discontinuities, a control unit of the active front end unit can seed the integrator of proportional-integral (PI) controllers that are brought online during the operating mode change with a value that represents the proper state of the current system, such as the measured or calculated value of the component the PI controller is controlling). In other examples, to reduce discontinuities, a control unit of the active front end unit can control reference frame alignment during a transition between a first operating mode and a second operating mode.